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a b s t r a c t

Techniques from sparse representation have been successfully applied in many areas like dig-

ital image processing, computer vision and pattern recognition in the past ten years. However,

sparsity based methods in geometric processing is far from popular than its applications in

these areas. The main reason is that geometric signal is a two-dimensional manifold and its

discrete representations are always irregular, which is different from signals like audio and im-

age. Therefore, existing techniques cannot be directly extended to handle geometric models.

Fortunately, sparse models are beginning to see significant success in many classical geomet-

ric processing problems like mesh denoising, point cloud compression, etc. This review paper

highlights a few representative examples of how the interaction between sparsity based meth-

ods and geometric processing can enrich both fields, and raises a number of open questions

for future study.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Sparsity based regularization and sparse signal represen-

tation [1,2] have proven to be an extremely powerful tool

for processing signals like audio, image and video. Sparse

techniques have become state-of-the-art tools in many fields

like machine learning [3,4], signal processing [5,6], neuro-

science [7,8] and statistics [9–11]. This success is mainly due

to the fact that important classes of signals such as audio

and images have naturally sparse representations with re-

spect to fixed bases (i.e., Fourier, Wavelet), or concatenations

of such bases. Moreover, efficient and provably effective al-

gorithms based on convex optimization or greedy pursuit

are available for computing such representations with high

fidelity [12].

While these successes in classical signal processing

applications are inspiring, in geometric processing we are

dealing with two-dimensional manifold signals with irregu-

lar domain, which is totally different from audio, image and
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video. One might justifiably wonder whether sparsity based

regularization and sparse representation can be useful at all

for geometric processing tasks. The answer has been largely

positive: in the past few years, variations and extensions

of �1 minimization have been applied to many geometric

processing tasks, including mesh denoising [13–15], surface

reconstruction [16], point cloud consolidation [17–21], mesh

segmentation [22–25], and point cloud registration [26].

In almost all of these applications, using sparsity as a prior

leads to state-of-the-art results.

Before going any further, we would like to briefly analyze

the difference between using sparse techniques in geometry

and in traditional fields. Sparse signal techniques have been

successfully applied on many aspects as acquiring, repre-

senting and compressing high-dimensional signals. This is

because that signals like audio and images can be sparsely

represented by fixed basis like Fourier, Wavelet and Discrete

Cosine Transform (DCT). Another important property of

these signals is that they have a natural domain on which

functions can be defined. For instance the domain of an

audio is time or frequency and the domain of an image is a

regular planar grid.

http://dx.doi.org/10.1016/j.gmod.2015.06.012

1524-0703/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.gmod.2015.06.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/gmod
http://crossmark.crossref.org/dialog/?doi=10.1016/j.gmod.2015.06.012&domain=pdf
mailto:lgliu@ustc.edu.cn
http://dx.doi.org/10.1016/j.gmod.2015.06.012


L. Xu et al. / Graphical Models 82 (2015) 160–180 161

Geometric signals usually consist of geometric positions

and sometimes connection relationships. The connection re-

lationships are represented by a 3D graph on which we can

take geometric positions as sampling for a certain three di-

mensional functions. We can take these relationships as the

domain of geometric signals. However these domains usu-

ally cannot embed onto a planar region and they are irreg-

ular compared to previous domains. Sometimes we cannot

handle geometry directly and we have to transform the ge-

ometry into feature space which might be some Euclidean

space. With these irregular domains another important issue

is that how to define the basis. Besides, famous sparse related

regularization terms for image processing like TV model as-

sume that image is piece-wise constant. Geometric signals

on the other hand are at least continuous. Thus most regu-

larization terms cannot be directly employed on geometric

problems.

Above all, applying sparse techniques on geometric sig-

nals generally faces the problems of handling irregular do-

main, defining basis functions and the geometric specified

regularization terms. Fortunately, many creative researchers

have found a lot of effective methods tackling these prob-

lems and successfully used sparse techniques to solve geo-

metric problems as mentioned above. And the experiment

results sufficiently show the advantages of sparse techniques,

such as robustness to noise, local controllability and feature

preserving.

In the rest of this paper, we would like to first introduce

traditional sparse models (Section 2) used in previous fields

like machine learning, computer vision, etc. Then accord-

ing to the different sparse models, we classify all the papers

into three parts (Sections 3–5) where we illustrate how these

techniques are successfully applied on geometric processing

problems. By giving a survey about the usage and the effec-

tiveness of sparse techniques, we would like to achieve the

goal of inspiring the researchers who are interested to dis-

cover more applications. In the end, Section 6 gives a sum-

mary and possible future works.

2. Preliminaries

Before illustrating how sparsity is applied on geometry

processing problems, we would like to introduce some no-

tations and general sparsity models.

2.1. Notation

To make this survey self-contained, here we introduce

some basic notations. Let x = (x1, x2, . . . , xk)
T be any vec-

tor in Euclidean space Rk, ‖x‖p denotes the �p norm of x

with ‖x‖p = (
∑k

i=1 |xi|p)1/p. And the �0 pseudo-norm of x

is defined as ‖x‖0 = #{i|xi �= 0} = ∑k
i=1 |xi|0. M = (mi j) rep-

resents a matrix in Rm×n. Its frobenius norm is defined as

‖M‖F = (
∑m

i=1

∑n
i=1 m2

i j
)1/2, and its nuclear norm is defined

as ‖M‖∗ = ∑
i σi(M) where σ i(M) is the ith singular value of

M. Nuclear norm is the convex envelope of rank(M), which

makes that ‖M‖∗ can be considered the relaxation of the rank

of M.

2.2. Sparse techniques

Generally, there are some basic assumptions in sparse

techniques. For example, a signal can be represented by a

sparse linear combination of dictionary elements, some spe-

cial signals can be approximated by a low rank matrix. In the

following, we will discuss these essential issues and general

models raised in this field.

2.2.1. Sparsity in vector

A vector signal u = (u1, u2, . . . , un)T ∈ Rn can be approx-

imated by a linear combination of dictionary elements {di ∈
Rn}m

i=1
, which can be formulated as

u ≈
m∑

i=1

xidi, (1)

where x = (x1, x2, . . . , xm)T is the coefficient vector. If x is

sparse, it means that signal u can be represented by a lin-

ear combination of few dictionary elements. However there

are also different explanations about sparsity that the vector

becomes sparse under a certain transformation. For instance,

the gradient of natural image is always sparse, and total vari-

ation model catches this observation well. In the following,

we will give three general models which are quite popular in

signal processing.

Sparse coding. Sparse coding method is widely used in com-

puter vision tasks like face recognition, image classification.

It assumes that the input signal can be sparsely represented

by a set of dictionary elements. The target of sparse coding is

to pursuit the sparse coefficient vector x. The formulation is

min
x

λ

2
‖u − Dx‖2

2 + ‖x‖p, (2)

where 0 ≤ p ≤ 1. If p = 0, ‖x‖p is equivalent to the number of

non-zero elements. However ‖x‖0 is a nonconvex norm such

that it is quite hard to obtain the optimal result and most

methods use greedy strategy to get an approximation result

[27,28]. On the other hand, Eq. (2) would be a convex prob-

lem if we set p = 1, and it is the well-known least absolute

shrinkage and selection operator (LASSO) [29]. The relation-

ship of the �1 relaxation and its origin sparse �0 model is an

open problem and [30] proves that under certain conditions

the results are equivalent. Recently researchers develop algo-

rithms solving (2) when 0 < p < 1 which also approximates

the sparse solution. As shown in Fig. 1, the iso-level curve

of ‖x‖p = 1 concentrates toward axes with p decreasing, and

thus model (2) returns more sparse result with smaller p

value.

As shown in Fig. 2, the input signal is a smooth curve with

random noise, and we reconstruct the curve with sparse cod-

ing formulation Eq. (2) with DCT as the dictionary. As shown

in the second row, we can use few dictionary elements to

approximate the signal with the help of �1 norm on the co-

efficient vector x. Sparse coding has been applied on many

kinds of problems [2] as face recognition [31], image super-

resolution [32], image classification [33].

Dictionary learning. As discussed above, the problem of

sparse coding focuses on the searching of sparse coeffi-

cient vector x. And popular basis functions or vectors are
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