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a b s t r a c t

Computation of bending forces on triangle meshes is required for numerous simulation and
geometry processing applications. In particular it is a key component in cloth simulation. A
common quantity in many bending models is the hinge angle between two adjacent trian-
gles. This angle is straightforward to compute, and its gradient with respect to vertex posi-
tions (required for the forces) is easily found in the literature. However, the Hessian of the
bend angle, which is required to compute the associated force Jacobians is not documented
in the literature. Force Jacobians are required for efficient numerics (e.g., implicit time step-
ping, Newton-based energy minimization) and are thus highly desirable. Readily available
computations of the force Jacobian, such as those produced by symbolic algebra systems, or
by autodifferentiation codes, are expensive to compute and therefore less useful. We pres-
ent compact, easily reproducible, closed form expressions for the Hessian of the bend
angle. Compared to automatic differentiation, we measure up to 7� speedup for the eval-
uation of the bending forces and their Jacobians.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Important problems in computer simulation, anima-
tion, and geometry processing, involve the formulation of
an energy in terms of the hinge angle between pairs of adja-
cent mesh triangles (see Fig. 1). Examples include the:

� Wrinkling energy of a worn garment [3,8].
� Elastic energy of a Kirchhoff–Love thin-shell [12].
� Deformation energy for example-driven deformations

[9].
� Willmore energy used in mesh smoothing [17].
� Dissipative potential of viscous liquid sheets [4].

Efficient numerical treatments of the associated varia-
tional problems (e.g., via Newton’s method) or partial dif-
ferential equations (e.g., via implicit time stepping [3])

necessitate a formulation not only of the energy and its
gradient, but also of the Hessian of the energy with respect
to mesh position.

In our own experience, and over years of interacting
with researchers and practitioners working on myriad
applications, we have found that these Hessians are
exceedingly tedious to derive by hand, with compact for-
mulations sometimes consuming weeks of manual deriva-
tion. This process is error prone, often leading to analytic
expressions that disagree with numerical validation. The
process can be suboptimal, missing opportunities for gath-
ering like terms, thus leading to longer source code and
more expensive computation. These liabilities are detri-
mental to the adoption of efficient numerical methods for
hinge-based energies, as evidenced in the literature:

� Bridson et al. [8] avoided Hessians by treating bending
forces explicitly; similarly Fröhlich and Botsch[9]
avoided Hessians by using Gauss–Newton’s method.
� Baraff and Witkin [3] introduced approximating

assumptions (e.g, inextensible cloth, undergoing only
small deformations, with flat rest shape) treating nor-
mals and edge lengths as constants.
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� Bergou et al. [6] and, Wardetzky et al. [17] derived a
simplified Hessian formula for the special case energy
sin2(h/2), using a technique that does not accommodate
the general case.
� Grinspun et al. [12] computed the Hessian using auto-

matic differentiation, which dominated the computa-
tional cost of the method.

Contributions. In light of these observations, this paper
seeks to facilitate adoption, code legibility, and computa-
tional efficiency of hinge-based bending energies.

� We present a compact and efficient formulation of the
Hessian for the general case of a hinge-based bending
energy.
� By taking advantage of several symmetries in the

expressions (some less obvious than others), we
observe that many terms can be reused when assem-
bling the Hessian for an entire mesh, further reducing
the cost of computation.
� We present the results of experiments documenting up

to 7� speedup of the formulation compared to autodif-
ferentiation and up to 4� speedup compared to an
existing (but unpublished) symbolic derivation.

2. Bending energy

Notation. Fig. 1 presents the labels and indices for a sin-
gle hinge stencil, consisting of four vertices xi, five edges ei

and ~ei, two normals n and ~n, bend angle h, interior angles ai

and ~ai, and heights hi and ~hi. Typically, the index i takes on
values 0, 1 and 2. Arithmetic on all indices is performed
modulo 3. Observe that edges (and all related quantities)
are generally labeled the same as the opposing vertices.
The tilde decoration is used to distinguish corresponding
quantities on the upper and lower triangles T and eT ,
respectively. Throughout we use bold letters for vectors.
Triangle and edge normals are all assumed to be
normalized.

Energy. For a given triangle mesh, consider an arbitrary
energy given by a summation over all the interior edges
(indexed by i), or ‘‘hinges,’’ of a triangle mesh,

EðxÞ ¼
X

i

wiðhiÞ; ð1Þ

The ‘‘bend angle’’ h is the angle between the normals of the
two triangles incident to the hinge, and w : R! R is an

application-specific transformation of the bend angle.
Drawing from the literature, examples for wi(hi) include

aiðhi � biÞ2 Discrete shells ½12�:
aiðsinðhi=2ÞÞ2 Discrete Willmore energy ½17�:

aiðcosðhi=2Þ � bihiÞ Simulation of clothing ½8�:

where ai and bi are application-specific scalar coefficients.
These typically depend on the local geometry of the mesh
and, in physical simulations, the material constitutive
properties.

Ref. [8] presented a force, not an energy; above we have
integrated the (conservative) force to obtain the corre-
sponding energy. By focusing on the conservative setting,
we can roughly halve the computation time, since the con-
servative force Jacobian is the negated energy Hessian,
which is symmetric by definition.

Bending forces and Hessians. We differentiate the energy
(1) with respect to vertex positions x to obtain the bending
forces and the energy Hessian

fðxÞ ¼ �
X

i

rwi and HðxÞ ¼
X

i

HessðwiÞ:

For one particular hinge i, dropping implied subscript
from wi and hi, the chain rule gives

rw ¼ w0rh; ð2Þ
HessðwÞ ¼ w0HessðhÞ þ w00rhTrh; ð3Þ

using the prime to differentiate a univariate function with
respect to its scalar argument, e.g., w0 = dw/dh.

Observe that the Hessian of the energy is a weighted
sum of Hess (h) and the outer product rhTrh with the
same weighting function w0 appearing in both rw and
Hess (w).

3. Hinge-angle gradient and Hessian

The expression forrh has been previously documented
in the literature in several forms equivalent to

rx1 h ¼
cos a2

h1
nT þ cos ~a2

~h1

~nT ; rx0 h ¼ �
1
h0

nT ;

rx2 h ¼
cos a1

h2
nT þ cos ~a1

~h2

~nT ; rx3 h ¼ �
1
~h0

~nT :

ð4Þ

By contrast, the expressions for the hinge angle Hessian
are not (to our knowledge) recorded in the literature. Like
others, we found the derivation to be extended and

Fig. 1. Vertices, edges, normals and angles around the edge shared by two triangles. The two rightmost schematics show the in-plane edge normals and the
associated altitudes from one edge to the opposing vertex. All of these are straightforward to compute given the edge vectors.
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