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a b s t r a c t

Ascending and descending Morse complexes, determined by a scalar field f defined over a
manifold M, induce a subdivision of M into regions associated with critical points of f, and
compactly represent the topology of M. We define two simplification operators on Morse
complexes, which work in arbitrary dimensions, and we define their inverse refinement
operators. We describe how simplification and refinement operators affect Morse com-
plexes on M, and we show that these operators form a complete set of atomic operators
to create and update Morse complexes on M. Thus, any operator that modifies Morse com-
plexes on M can be expressed as a suitable sequence of the atomic simplification and
refinement operators we have defined. The simplification and refinement operators also
provide a suitable basis for the construction of a multi-resolution representation of Morse
complexes.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Representing topological information extracted from
discrete scalar fields becomes more challenging as more
applications, such as analysis and visualization of terrain
models, shape and volume data sets, and time-varying vol-
ume data sets see increasing amounts of data. Morse the-
ory offers a natural and intuitive way of analyzing the
structure of a scalar field as well as of compactly represent-
ing the scalar field through a decomposition of its domain
into meaningful regions associated with the critical points
of the field.

A discrete scalar field f is defined by its values at a finite
set V of points on a manifold M in Rn. The discretization of
M is often obtained through a simplicial mesh (such as a
triangle, or a tetrahedral mesh), or through a regular grid
formed by square cells in 2D, or by hexahedral cells in
3D. This geometry-based description provides an accurate
representation of a scalar field f, but it fails in capturing
compactly its topological structure, defined by critical

points and integral lines of f. Beside being compact, a topo-
logical description supports also a knowledge-based ap-
proach to analyze, visualize and understand the scalar
field behavior (in space and time), as required, for instance,
in visual data mining applications.

The descending Morse complex is composed of cells de-
fined by the integral lines of f with the same destination.
Dually, the ascending Morse complex is composed of cells
defined by the integral lines with the same origin. The
Morse–Smale complex describes the subdivision of M into
cells determined by integral lines with the same origin and
destination [40]. These subdivisions have been recognized
as convenient representations for analyzing the topology
of M, and the behavior of f over M.

Structural problems in Morse and Morse–Smale com-
plexes, like over-segmentation in the presence of noise,
or efficiency issues arising because of the very large size
of the input data sets, can be faced and solved by defining
simplification operators on those complexes and on their
topological representations. Morse and Morse–Smale com-
plexes can be simplified by cancelling critical points in pairs
[35]. Cancellation eliminates two critical points of f, two
cells in the Morse complexes, and two vertices in the
Morse–Smale complexes. Surprisingly, a cancellation may
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increase the incidence relation on the Morse complexes,
and the number of cells in the Morse–Smale ones.

We define two dual dimension-independent simplifica-
tion operators, which do not have these undesirable prop-
erties. The two simplification operators are defined directly
on the Morse complexes. We have introduced these oper-
ators in [13], where we have shown their effect on a
graph-based representation of the two Morse complexes.
Here, we describe the effect of these operators on the
Morse complexes in detail. We define the inverse refine-
ment operators to the simplification operators, and we de-
scribe in detail their effect on the Morse complexes. We
show that simplification and refinements operators are va-
lid, i.e., that the result of an application of a feasible simpli-
fication or refinement operator on a Morse complex is a
Morse complex.

The combination of the simplification and refinement
operators defines a minimally complete set of operators
for creating and updating Morse decompositions. We
prove this result formally by interpreting these operators
as Euler operators, i.e., as operators, which affect a constant
number of cells in the Euler–Poincaré formula on the
ascending and descending Morse complexes. As a conse-
quence, any operator for creating and modifying Morse
complexes can be expressed as a suitable sequence of our
simplification and refinement operators. In particular, we
consider a macro-operator defined in [24] that consists of
a 1-saddle-2-saddle cancellation followed by cancellations
involving extrema, and we show that this macro-operator
can be easily expressed as a sequence of a subset of our
operators. The operators we define can be used to generate
a multi-resolution model for Morse complexes. The basic
ingredients of such model are refinement operators and a
suitable dependency relation defined on them.

In summary, contributions of this work include

� a set of simplification operators on the Morse com-
plexes, which:
– reduce the incidence relation on the Morse com-

plexes, and the number of cells in the Morse–Smale
complexes,

– can be seen as merging or collapsing of cells in the
Morse complexes, and

� a set of inverse refinement operators on the Morse
complexes.

The simplification and refinement operators

� are defined in arbitrary dimension,
� maintain the topological validity condition expressed

by the Euler–Poincaré formula,
� form a minimally complete set of operators for creating

and updating Morse complexes, so that any macro-
operator can be expressed as a suitable combination
of operators in this set, and
� form a basis for a new general multi-resolution model

of the Morse complexes.

The remainder of the paper is organized as follows. In
Section 2, we review some basic notions on cell complexes
and on Morse theory. In Section 3, we discuss related work.

In Section 4, we investigate cancellation of critical points of
a Morse function f, and its effect on the related Morse and
Morse–Smale complexes in arbitrary dimensions. In Sec-
tion 5, we define two dual simplification operators that
we call removal and contraction, and we describe how
ascending and descending Morse complexes are affected
by these operators. In Section 6, we define the inverse
refinement operators, and we describe how these opera-
tors affect the two dual Morse complexes. In Section 7,
we give a proof of the validity of the simplification and
refinement operators, and we show that they form a basis
for the set of operators that modify Morse complexes in a
topologically consistent manner. In Section 8, we explain
the relationship between cancellation and removal and
contraction operators in 3D, and we show how a 1-sad-
dle-2-saddle macro-operator can be expressed through
our operators. In Section 9, we draw some concluding re-
marks and we briefly discuss a multi-resolution model
based on the simplification and refinement operators we
introduced.

2. Background notions

In this Section, we briefly review some basic notions on
cell complexes (for more details on algebraic topology, see
[34]). A survey on topological shape representations based
on cell complexes is given in [15]. We then review the ba-
sic notions of Morse theory in the case of n-manifolds (for
more details, see [35,36]).

2.1. Cell complexes

Intuitively, a cell complex is a collection of basic ele-
ments, called cells, which cover a domain in Euclidean
space Rm. A 0-cell is a point in Rm. The boundary of a 0-cell
is empty. A k-dimensional cell (k-cell) c in Euclidean space
Rm; 1 6 k 6 m, is a subset of Rm homeomorphic to an open
k-dimensional ball Bk ¼ fx 2 Rk : kxk < 1g, with non-null
(relative) boundary with respect to the topology induced
by the usual topology of Rm (kxk denotes magnitude or
norm of a vector x). The integer k is called the dimension
of a k-cell c.

An n-dimensional cell complex in Rm is a finite set of
cells C in Rm of dimension at most n, 0 6 n 6m, such that

1. the cells in C are pairwise disjoint,
2. for each cell c 2 C, the boundary of c is a disjoint union

of cells of C.

The boundary of each cell c in a cell complex C is com-
posed of cells of lower dimensions belonging to C. The set
of all these cells is called the (combinatorial) boundary of c.
The (combinatorial) co-boundary of c consists of all cells of
C that have c in their combinatorial boundary. If c is a k-
cell, then the immediate boundary of c consists of all
(k � 1)-cells on the boundary of c, 1 6 k 6 n, and the imme-
diate co-boundary of c consists of all (k + 1)-cells in the co-
boundary of c, 0 6 k 6 n � 1. An h-cell c0 on the boundary
of a k-cell c, 0 6 h 6 k, is called an h-face of c, and c is called
a coface of c0. Each cell c is a face of itself. If c0 – c, then c0 is
called a proper face of c, and c and c0 are said to be incident.
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