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Abstract

Swirling-sweepers is a new method for modeling shapes while preserving volume. The artist describes a deformation by
dragging a point along a path. The method is independent of the geometric representation of the shape. It preserves volume
and avoids self-intersections, both local and global. It is capable of unlimited stretching and the deformation can be con-
strained to affect only a part of the model. We argue that all of these properties are necessary for interactive modeling if the
user is to have the impression that he or she is shaping a real material. Our method is the first to implement all five.
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1. Introduction

In a virtual modeling context, there is no material:
no wax, clay, wood or marble. A challenge for
computer graphics is to provide a virtual tool that
convinces the artist that there is material. To perfect
this illusion, the shape must behave in accordance
with a suitable modeling metaphor.
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Volume is one of the most important factors
influencing the manner in which an artist models
with real materials. A virtual tool preserving volume
is needed to help the artist believe he is interacting
with material. Also, modeling by preserving the
available amount of material will produce a shape
with style, that other virtual modeling methods
can only achieve with more effort.

1.1. Previous volume-control models

Volume preservation has been recognized for a
long time in animation as a desirable property for
the animation of believable animal and human char-
acters [1]. Platt and Barr [2] use constrained optimi-
zation methods for objects discretized into lattices.
Desbrun and Cani [3] use controllers for maintain-
ing the implicit surface that coats a set of particles
to a constant volume during deformation. Foster
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and Fedkiw [4] achieve incompressibility in water
simulation by maintaining a divergence free velocity
field, thanks to the Poisson equation. Teran et al. [5]
rely on finite volume methods to simulate quasi-in-
compressible materials such as muscular tissue.

Volume preservation has also been considered as
a very useful constraint for the intuitive modeling of
shapes. Rappoport et al. [6] propose an optimization
method to adjust the control points of the popular
free form deformations (FFDs) [7], but it works only
for tensor-solids. Hirota et al. [8] also adjust FFD
control points, but their method does not allow local
editing. Aubert and Bechmann [9] propose a vol-
ume-preserving space deformation based on a model
called DOGME. The deformation does not have a
local support, and requires the computation of the
shape’s volume. Botsch and Kobbelt [10] preserve
only a volume between the surface and a base sur-
face. Dewaele and Cani [11] introduce mass-preserv-
ing local and global deformations for shapes
represented by a mass-density field sampled in a grid.

The limitation of existing methods is either that
they only apply to a specific type of geometric rep-
resentation, or they only apply to shapes whose vol-
ume can be computed.

1.2. Qverview

This paper presents swirling-sweepers, a new
method dedicated to modeling shapes while preserv-
ing the shape’s volume. Our technique belongs to
space deformations, and is therefore applicable to
a wide range of geometric representations, including
all of the popular parametric surfaces.

It is the first method that preserves volume, has a
local support, prevents local and global self-inter-
section of the surface, and does not require any vol-
ume computation. Most importantly, using the
method is simple: the artist only has to provide
the trajectory of a point, for instance with a mouse.

In Section 2, we summarize the principle of the
space deformations called sweepers. Then, we pres-
ent in Section 3 our new method for modeling by
constant-volume deformation. Finally, we propose
a shape representation suitable for interactive shape
modeling in Section 4.

2. Principle of sweepers
We briefly review the clements required for

understanding the space deformations called sweep-
ers [12].

Space deformation provides a formalism to spec-
ify any modeling operation by successively deform-
ing the space in which an initial shape, S(tp), is
embedded. A deformed shape is given by the model-
ing equation2:

S(ta) = {25 furiees (D) P € S(t0) }. (1)

where f,.,., : R* — R® are n space deformations,
deforming a point p of shape S(¢;) into a point of
shape S(z;+1).

Sweepers provide a convenient formalism to
define deformation functions f,..,,, useful for shape
modeling. The user defines a sweeper deformation
simply by moving a geometric tool with a gesture.

Informally, a sweeper deformation is a geometric
tool together with a motion path. This tool defines
an influence function that describes the magnitude
of the tool’s effect on space. The motion of the tool
drags a part of space defined by the influence func-
tion, in a manner that prevents the surface of the
deformed shape from self-intersecting. This proper-
ty is relevant: a surface self-intersection is undesir-
able since it produces an incoherent shape, and
also because a space deformation cannot remove a
self-intersection.

More formally, a simple sweeper deformation is
defined by a scalar function, ¢, : R*—[0, 1], that var-
ies over time, ¢. This field can be defined convenient-
ly by composing the distance to the tool d,, with an
influence function u:

¢, =pod,. (2)

Any smooth decreasing function of finite support
can be used for u. We chose a C? continuous piece-
wise polynomial, in which A defines the radius of the
influence:

d 0 lf ;L g dh
B = @@ (15— 6%) — 10) if 4> d,
3)

The tool’s motion is defined by transforming the
tool’s position, size, and orientation, given by the
matrix M, into the next configuration, given by
the matrix M, . Let us denote M; =M,  -M,"
the transformation matrix from the previous to
the new configuration. A naive deformation of a
point p with a single tool would be:

2 Q) fi, (p) expresses the finite repeated composition of
functions f;, 1, 0+ © fiymr, (D).
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