
SMI 2015

Injectivity conditions of rational Bézier surfaces

Xuan-Yi Zhao, Chun-Gang Zhu n

School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China

a r t i c l e i n f o

Article history:
Received 12 March 2015
Received in revised form
14 May 2015
Accepted 15 May 2015
Available online 28 May 2015

Keywords:
Rational Bézier surface
Injectivity
Self-intersection

a b s t r a c t

Rational Bézier surface is a common fitting tool in Computer Aided Geometric Design. The injectivity of
curve/surface implies the one-to-one property and there is no self-intersection of curve/surface. In this
paper, we propose a geometric method for checking the injectivity of rational Bézier surface based on its
control points.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Injectivity of a function map plays an important role in image
warping and morphing, 3D deformation, and volume morphing. It
can avoid image fold, information loss and obtain desirable results.
The injectivity of a curve/surface implies the one-to-one property
and is equivalent to no self-intersection on the curve/surface.
Hoffmann [5] pointed out that the intersection problem is a
fundamental problem in the integration of geometric objects and
solid modeling systems. Checking the possibility of the self-
intersections and calculating the intersections of curves or surfaces
are important in Computer Aided Geometric Design (CAGD).

In 1989, Lasser [3] proposed an algorithm to calculating the self-
intersections of Bézier curves and spline curves. The “Angle
criterion” proposed in his paper gave out that if the sum of the
rotation angles is smaller than or equal to π, then the curve has no
self-intersection. However, this is a rough estimation of the
existence of the self-intersections since the curve may have no
self-intersection though the sum of the rotation angles is bigger
than π. We will explain the reason in this paper. Manocha and
Canny [20], Laurent [21], and Patrikalakis [22] studied the inter-
sections of curve to surface (or surface to surface). Their works
focused on the calculation of the self-intersections not the check-
ing method for the existence of self-intersections.

In 1994, Goodman and Unsworth [6] proposed the sufficient
condition for the injectivity of 2D Bézier surface. Their condition
contained 2mðmþ1Þþ2nðnþ1Þ linear inequalities for a m� n 2D

tensor-product patch. Following this work, Hernández-Mederos
et al. [23] proposed a sufficient condition for local injectivity of a
2D triangular cubic Bézier function in 2006. The locally sufficient
injectivity conditions of 2D and 3D uniform cubic B-spline surfaces
were proposed by Choi and Lee [7] and they applied the methods
to image morphing. Floater [24] proved that convex combination
mappings are one-to-one if the boundary of the triangulation is
homeomorphic to a convex polygon. Recently, Müller et al. [19]
gave the conditions of injectivity of the polynomial mappings
based on the theory of algebraic geometry and combinatorics.

We consider the sufficient and necessary condition of the
injectivity of rational Bézier surface. To study dynamical systems
arising from chemical reaction networks, Craciun et al. [8] pre-
sented an injectivity theorem for certain mappings. Based on this
theorem, Craciun et al. [9] proposed a geometric condition on
control points of toric Bézier surface. This geometric condition is
equivalent to the surface with no self-intersection for arbitrary
choice of positive weights. However, the result in [9] only guaran-
tees injectivity in the interior of a patch. Sottile and Zhu [10]
corrected this minor flaw, at least for 2D patches. For 3D rational
Bézier curve case, Zhu and Zhao [11] proposed the geometric
condition on the control polygon which implies that rational Bézier
curve has no self-intersection for any choice of positive weights. It
is well known that the boundary curves of rational Bézier surface
are rational Bézier curves. Since the interior of a surface may
intersect with its boundary curves, the conditions of interior
control points for checking the injectivity of the rational Bézier
surface should be reconsidered. In this paper, we will present a
geometric condition for control points of the rational Bézier surface
which guarantees the injectivity of surface.

In fact, the shape of control net implies the shape of the surface.
This phenomenon brings us a question: Does no self-intersection of
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control net of rational Bézier surface imply no self-intersection of the
surface? The answer is NO. For example, the control net in Fig. 1 has
no self-intersection. It is obvious that surface with this control net
in Fig. 1a has self-intersections, which can be removed by changing
another set of positive weights as shown in Fig. 1b. We will explain
the reason in Section 3.

In this paper, we define a geometric characteristic of the set of
control points, called well-posedness, which implies the injectivity
of the rational Bézier surfaces for any choice of positive weights.
The description of some definitions is based on toric Bézier
surfaces introduced by Krasauskas [12] and the proofs of our
results are based on toric degenerations of Bézier surfaces pro-
posed by García-Puente et al. [13]. We also indicate that when the
control points lie on a plane, our result is equivalent to the injective
condition for 2D rational Bézier surfaces presented by Sottile and
Zhu [10]. We prove results of rational tensor product Bézier
surfaces in Section 3. For rational Bézier triangle surface, we only
list the results without proof.

2. Rational Bézier surface and toric degeneration

In this section, we employ the equivalent definition of rational
Bézier surface derived from Krasauskas's toric surface patch [12]. In
order to prove our main result, we recall the degree elevation
algorithm (refer to [1,2,14]) and the toric degeneration theory
presented by García-Puente et al. [13] of rational Bézier surface.

Definition 1. The parametric surface:

Rðu; vÞ ¼
Pm
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j ¼ 0 ωi;jPi;jB
m
i ðuÞBn
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ðu; vÞA ½0;1� � ½0;1� ð1Þ
is called a rational Bézier surface of degree m� n, where Bm

i ðuÞ and
Bn
j ðvÞ are tensor-product Bernstein basis functions of degree m� n,

Pi;j are control points and ωi;j are the weights. The control net N is

the m� n grid composed of connecting the neighboring control
points in the same row and column using line segments.

The rational Bézier surface Rðu; vÞ can be represented as a
rational Bézier surface of degree ðmþ1Þ � ðnþ1Þ by the degree
elevation algorithm:
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where

ωn

i;j ¼ αiβjωi�1;j�1þαið1�βjÞωi�1;j

þð1�αiÞβjωi;j�1þð1�αiÞð1�βjÞωi;j
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i;j;

where the coefficients αi ¼ i=ðmþ1Þ; βj ¼ j=ðnþ1Þ. The result from
[1,2,14] shows that the limit of sequence of control nets obtained
by degree elevation is the surface itself.

Rational Bézier surfaces are particular cases of toric surface
patches (refer to [12]) with the spacial coefficients. We illustrate
the definition following Krasauskas's toric patches, which is
equivalent to its traditional definition.

Let Am;n ¼ fði; jÞj i¼ 0;1;…;m; j¼ 0;1;…;ng, m;n be two positive
integers, and □m;n ¼ ΔAm;n ¼ convfAm;ng be a lattice polygon with
four vertices (0,0), ðm;0Þ; ð0;nÞ and (m,n). The boundary lines of
□m;n defined by f 1ðu; vÞ ¼ u, f 2ðu; vÞ ¼ v, f 3ðu; vÞ ¼m�u and
f 4ðu; vÞ ¼ n�v.

Definition 2. Given Am;n �Z2, control points set P ¼ fPi;j j ði; jÞ
AAm;ng �R3 and weights ω¼ fωi;j40j ði; jÞAAm;ng, the toric Bézier
surface associated with rectangle □m;n is parameterized by the rational

Fig. 1. Bicubic rational Bézier surfaces. (a) The bicubic rational Bézier surface with self-intersections and (b) the bicubic rational Bézier surface without self-intersections.
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