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a b s t r a c t

We explore a class of polynomial tensor-product spline surfaces on 3-6 polyhedra, whose vertices have
valence n¼3 or n¼6. This restriction makes it possible to exclusively use rational linear transition maps
between the pieces: transitions between the bi-cubic tensor-product spline pieces are either C1 or they
are G1 (tangent continuous) based on one single rational linear reparameterization. The simplicity of the
transition functions yields simple formulas for a hierarchy of splines on subdivided 3-6 polyhedra.

Crown Copyright & 2015 Published by Elsevier Ltd. All rights reserved.

1. Introduction

For genus g¼1, e.g. the torus, an affine atlas can be constructed,
for example, using B-splines on a tensor-product grid, made
periodic by setting equal the opposing edges. For genus g41, as
a consequence of the Gauss–Bonnet Theorem, a closed, orientable,
smooth 2-manifold does not have an affine atlas. However, a paper
in this conference series [11] showed that there is a rational linear
reparameterization for constructing smooth surfaces of genus g40
from tensor-product splines. If the reparameterization is structu-
rally symmetric, i.e. indexing does not matter (cf. Definition 4),
then it is unique.

Together with Lemma 4 of [10], exclusive use of a structurally
symmetric rational linear reparameterization implies that the
resulting piecewise tensor-product spline surfaces must be
assembled from basic pieces with the restricted layout: wherever
the spline patches join with purely geometric continuity (G1

continuity, not C1 continuity) across a boundary, its end vertices
must have equal valence.

By the “hairy ball” theorem (see e.g. [4]), a regular surface of
genus g41 must have transitions with purely geometric continu-
ity. The paper [11] derived the apparently unique restricted layout
for quad-only polyhedra: every quad has vertices of valence 8 or is
a grid-like refinement thereof. This paper now presents a second,
more natural family of restricted-layout quadrilateral polyhedra

that uses less dramatic valences, namely any combination of n¼3
and n¼6 or a grid-like refinement of the quads (see Fig. 1).

The contributions of this paper are as follows:

� We exhibit a family of quadrilateral polyhedra, the 3-6 poly-
hedron, with vertices of valence n¼3 or n¼6, that satisfy the
restricted layout. (Grid-like partition of the 3-6 quads of the 3-6
polyhedron yields additional vertices of valence n¼ 4, see
Figs. 1 and 2).

� The simplicity of the transition functions yields simple formu-
las for a hierarchy of splines on grid-like subdivided input
meshes. Each finer level offers additional geometric degrees of
freedom (see Fig. 3) for detailed models.

Overview: Section 2 reviews the pertinent literature. Section 3
formalizes the notion of a 3-6 polyhedron, its refinement and
properties, the notion of structurally symmetric geometric con-
tinuity and explains the structure of the resulting surfaces. Section 4
introduces a hierarchy of G1 spline surfaces on subdivided 3-6
polyhedra, by providing a concrete algorithm and proving geo-
metric continuity.

2. Literature

Since regular, differentiable 2-manifolds (surfaces) of genus
gZ2 without boundary do not have an affine atlas, we cannot
hope to just make an affine change of variables to transition
between all the tensor-product spline pieces of a regularly
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parameterized smooth closed surface of genus g41 in R3. However,
if we allow rational linear reparameterization, we can, in principle,
find conformal bijective orientation-preserving transition maps such
as Möbius transformations. Concretely, Peters and Fan [11] exhibited
a unique rational linear reparameterization that allows structurally
symmetric construction of smooth surfaces of genus g40. This
reparameterization relates the derivatives of two abutting spline
patches p and q along their common curve by linear scaling, i.e.

∂2pðt;0Þþ∂2qð0; tÞ ¼ωðtÞ∂1pðt;0Þ ðG1Þ
where ωðtÞ is linear.

An independent result, [10, Lemma 4], rules out general G1

constructions with ωðtÞ linear everywhere with one exception: the
derivatives can be everywhere related by (G1) if the endpoints pð0;0Þ
and pð1;0Þ have the same valence – or if ω in (G1) is constant. In
short, “linearly G1-connected vertices must have the same valence”.

More recently, Beccari et al. [3] introduced RAGS, a construction
using rational three-sided macro patches connected by a rational
linear reparameterization (whereas the four-sided patches in [11]
are polynomial). This approach generalizes the work of Alfeld,

Neamtu and Schumaker, who obtained functions on surfaces by
restricting trivariate polynomials to a genus g¼0 surface [2] and
credited part of their approach to [9]. Pottmann and Wallner
applied hyperbolic geometry to model smooth surfaces of higher
genus by rational splines: [13,12] used the classical Möbius map to
assemble an atlas from overlapping disks. Atlas-based surface
construction was pioneered by [5].

While Beccari et al. [3] propose a computation to enforce
constraints that allow for a rational linear reparameterization, a
careful reading of [3] shows that, in the structurally symmetric case,
their construction uses the rational linear reparameterization derived
in [11] for three-sided patches – an observation that the uniqueness
of the parameterization up to a scalar degree of freedom already
predicts. Once a structurally symmetric base atlas of three-sided
patches has been created, each three-sided patch can be irregularly
partitioned into triangular macro-patches and additional vertices
resulting from splitting triangles can have any number of neighbors
(see Fig. 4a). It is only after pruning away these extra triangulations
that the underlying structure becomes apparent and shows that
structurally symmetric G1 constructions are equally restricted for
triangular patches as for tensor-product patches.

3. Restricted quad-layouts compatible with rational linear
transition maps

Below, in Section 3.1, we define the restricted patch layout and
a class of polyhedra, the 3-6 polyhedra, that can be endowed with
a piecewise tensor-product spline surface to satisfy a restricted
patch layout. In Section 3.2 we review the definition and results
concerning the geometric continuity of structurally symmetric
rational linear transition maps. Finally, in Section 3.3, we show
how we index the tensor-product patches and their coefficients.

3.1. Restricted quad-layout and 3-6 polyhedron

Euler's formula, v�eþ f ¼ χ, characterizes closed polyhedra by
relating the numbers of vertices v, edges e and faces f of a given
polyhedron to the Euler characteristic (Euler–Poincaré character-
istic) χ ¼ 2�2g. Here g is the topological genus, i.e. the number of
handles. For example, Fig. 2b shows a surface of genus 5 built
exclusively from quads whose vertices have valence n¼3, 6, 6 and
6. We note that since we can associate with each 4-valent vertex
four half-edge and four quarter of attached quads the net con-
tribution of 4-valent vertices to the Euler count is
1�4=2þ4=4¼ 0. Then adding or removing checkerboard arrange-
ments of quadrilaterals does not affect the left hand side v�eþ f of
Euler's formula (cf. Fig. 4b).

Lemma 4 of [10] proves that structurally symmetric geome-
trically smooth surface constructions must relate some abutting
patches with quadratic or higher-degree reparameterizations –

unless they have a restricted layout. Restricted layout relates the

Fig. 1. (a) An example 3-6 quad with valences n¼ 3;6;6;6 and its uniform binary subdivisions (b) at level ℓ¼ 1 and (c) at level ℓ¼ 2. Each (subdivided) 3-6 quad is
associated with one tensor-product spline patch.

Fig. 2. The layout induced by once-subdivided 3-6 quad allows modeling smooth
objects of any genus greater than one using one bi-cubic polynomial piece per sub-
quad: (a) uses 2� 6 quads, (b) 8� 6 quads. (a) 3-neighborhood, level 1 [3,6,6,6]
quads, genus g¼2 (b) 6-neighborhood, level 1 [3,6,6,6] quads, genus g¼5.
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