Computers & Graphics 51 (2015) 81-89

Contents lists available at ScienceDirect OMP ,
&GRAPHICS

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

SMI 2015

Large mesh simplification for distributed environments

@ CrossMark

Daniela Cabiddu *, Marco Attene

CNR-IMATI Genova, Italy

ARTICLE INFO

ABSTRACT

Article history:

Received 12 March 2015
Received in revised form

12 May 2015

Accepted 13 May 2015
Available online 1 June 2015

Keywords:
Indexed mesh

An algorithm is described to simplify arbitrarily large triangle meshes while leveraging the computing
power of modern distributed environments. Our method combines the flexibility of out-of-core (O0C)
techniques with the quality of accurate in-core algorithms, while representing a particularly fast
approach thanks to the concurrent use of several computers in a network. When compared with
existing parallel algorithms, the simplifications produced by our method exhibit a significantly higher
accuracy. Furthermore, when our algorithm is run on a single machine, its speed is comparable with
state-of-the-art OOC techniques, whereas the use of more machines enables relevant speedups.

Out-of-core
Big data
Parallel algorithm

Noticeably, we observe that the speedup increases as the size of the input mesh grows.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the last few decades, the evolution of 3D acquisition technol-
ogies called for methods to simplify meshes that have become large
and larger. Earlier simplification algorithms [1,2] could focus on
efficiency and accuracy only, and today we know that methods
based on iterative edge collapses driven by quadric error metrics are
both efficient and, under certain conditions, provably optimal [3].
Soon, however, too large meshes appeared that could not fit in main
memory, and existing algorithms needed to be redesigned to
account for an appropriate out-of-core elaboration. In most of these
methods the mesh is partitioned in several sub-meshes, each small
enough to be processed with traditional algorithms. In some cases
the mesh can be partitioned using an in-core algorithm: this is
appropriate when memory is enough to store the mesh, but no
further space is available to host all the support data structures
necessary for the simplification (e.g. quadric matrices and priority
queues) which are often more memory-demanding than the mesh
itself. Conversely, when even the plain mesh is too large, out-of-
core partitioning is required to produce the sub-meshes.

After having simplified each of the sub-meshes separately,
these partial objects can be merged back into a single mesh. If
the resulting simplifications are comprehensively small enough to
fit in memory, in-core methods can be exploited to merge and
polish the final result. Some algorithms, for example, avoid to
simplify the sub-mesh boundaries to guarantee an exact match
after the simplification. These contact regions are then unified in

* Corresponding author.
E-mail addresses: daniela.cabiddu@ge.imati.cnr.it (D. Cabiddu),
marco.attene@ge.imati.cnr.it (M. Attene).

http://dx.doi.org/10.1016/j.cag.2015.05.015
0097-8493/© 2015 Elsevier Ltd. All rights reserved.

an in-core merging phase and, if necessary, their neighborhood is
simplified using traditional algorithms. When the resulting sim-
plification is still too large for in-core post-processing, contact
borders can either be kept unsimplified or treated using a local,
though sub-optimal, approach. For example, vertex clustering can
be used to simplify sub-meshes so that their eventual boundaries
are guaranteed to match, but this has a cost in terms of quality,
especially when simplifying meshes with fair morphological
variations (i.e. large flat areas mixed with feature-rich areas).

Furthermore, it is important to consider that the most diffused
formats employ an indexed mesh representation: a first block in
the file represents the vertex coordinates, whereas a second block
represents each triangle as a triplet of indexes referred to the first
block. Thus, while partitioning the vertices is relatively easy,
indexes must be dereferenced to partition triangles, and the latter
is not a trivial operation when memory is not sufficient to host all
the vertex coordinates. For this reason, most existing methods
assume that the input mesh is represented as a list of triangles,
each directly encoded by the coordinates of its three vertices. Note
that the high redundancy of such “triangle soups” represents a
severe limitation when even an indexed mesh requires giga or
even terabytes of disk space [4,5].

A last important aspect that deserves attention is the efficiency.
Even if multi-core architectures can be exploited to accelerate the
process, the memory available on a single machine has a limit that
imposes a sequentialization in any case. Conversely, distributed
computer networks give access to virtually infinite resources while
still enabling concurrent processing. However, typical multi-core
methods communicate based on a fast-access shared memory [6]
which is not available in a standard computer network. Hence, these
methods are not suitable and innovative solutions are required.


www.sciencedirect.com/science/journal/00978493
www.elsevier.com/locate/cag
http://dx.doi.org/10.1016/j.cag.2015.05.015
http://dx.doi.org/10.1016/j.cag.2015.05.015
http://dx.doi.org/10.1016/j.cag.2015.05.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2015.05.015&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2015.05.015&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2015.05.015&domain=pdf
mailto:daniela.cabiddu@ge.imati.cnr.it
mailto:marco.attene@ge.imati.cnr.it
http://dx.doi.org/10.1016/j.cag.2015.05.015

82 D. Cabiddu, M. Attene / Computers & Graphics 51 (2015) 81-89

To summarize, the following aspects should be taken into
account when designing a large mesh simplification algorithm:
(1) Out-of-core initial partitioning; (2) Out-of-core final merging/
post-processing; (3) High quality of the simplification/ adaptivity;
(4) Treatment of indexed meshes; (5) Efficiency and dist-
ributable load.

Herewith, we propose an original algorithm that satisfies all the
aforementioned requirements while being comparable with, or
even outperforming, less flexible state-of-the-art approaches. To
the best of our knowledge, no existing method encapsulates all
these characteristics.

2. Related work

In parallel algorithms [7-11] a “master” processor partitions the
input mesh and distributes the portions across different “slave”
processors that perform the partial simplifications simultaneously.
When all the portions are ready, the master merges the results
together. The many slave processors available in modern GPU-
based architectures are exploited in [12]. In these methods the
main goal is to speedup the process and, with the exception of [7],
the typical approach to partition the input exploits in-core
algorithms.

Besides [7], other effective out-of-core partitioning techniques
are described in [13,14]. These methods typically require their
input to come as a triangle soup. When the input is represented
using an indexed format, it must be dereferenced using out-of-
core techniques [15], but this additional step is time-consuming
and requires significant storage resources. As an exception, the
method proposed in [16] is able to work with indexed representa-
tions by relying on memory-mapped I/O managed by the operat-
ing system; however, if the face set is described without locality in
the file, the same information is repeatedly read from disk and
thrashing is likely to occur. Instead of partitioning the input into
fixed portions, processing sequences are used in [17] and
approaches based on streaming simplification are proposed in
[18,19]. These approaches are very elegant and do not need to deal
with boundary coherence. Even in these cases, however, conver-
sion to appropriate processing sequences and mesh pre-sorting
operations are non-trivial processes that require a significant
time [20].

In [13] the vertex clustering approach by Rossignac and Borrel
[21] is modified to use a quadric error metric to compute the
representative vertex. With respect to [21], this choice improves
the quality of the resulting mesh, and the use of a clustering-based
simplification guarantees that adjacent mesh portions have coher-
ent common boundaries. The adaptive clustering employed in [16]
leads to an even higher quality result, whereas in [22] boundaries
are kept consistent at each iteration thanks to a smart octree-
based external memory data structure. Both [13,16] solve the
problem of boundary coherence, but the quality of their simplifi-
cations is still not comparable with traditional methods based on
global priority queues [1]. On the other hand, Cignoni et al. [22]

provide high quality simplifications, but the approach is not
suitable for a distributed setting.

The possibility to exploit distributed environments is scarcely
treated in the literature. In [7] this possibility is considered but,
due to the use of a distributed shared memory, the approach
proposed is appropriate only on high-end clusters where local
nodes are interconnected with particularly fast protocols. To the
best of our knowledge, the only existing technique that can
operate without any shared memory is described in [11], but
out-of-core partitioning is not supported.

3. Distributed simplification

In our reference scenario a number of consumer PCs are
connected within a standard lab network, and a very large mesh
M represented as an OFF file is stored on the local disk of one of
these machines. In analogy with previous work on parallel
processing, we call this latter machine the “master”, whereas all
the other PCs are “slaves”. To simplify M, our method considers a
target accuracy, the master's available memory, the number N; of
available slaves, and the available memory on each of the slaves.
For the sake of simplicity, our exposition assumes that all the
slaves have an equally-sized memory and a comparable speed.

Fig. 1 shows how the distributed simplification algorithm
works. In the first step, the master partitions the mesh into a
collection of submeshes using an out-of-core algorithm. Sub-
meshes are then grouped into independent sets (ISs), so that
submeshes in each IS are fully disjoint (i.e. they do not share any
element) (Fig. 1b). Each IS is guaranteed to contain at most N
submeshes to be simultaneously sent to the slaves for simplifica-
tion. In the first iteration, each submesh is simplified in all its parts
according to the target accuracy (Fig. 1c). Besides the simplified
mesh, each slave also produces an additional file identifying which
vertices on the submesh boundary were removed during simpli-
fication. This information is appended to adjacent submeshes and
used as a constraint during their own simplification (Fig. 1d-e).
When all the ISs have been processed, the master employs an out-
of-core algorithm to join the simplified submeshes along their
boundaries, which are guaranteed to match exactly (Fig. 1f).

3.1. Input partitioning

The input to our partitioner is an indexed mesh M =(V,T),
where Vis a list of vertices and T is a set of triangles. Each vertex v;
in Vis encoded by its three coordinates, whereas each triangle t; in
T is encoded by three integer indexes: an index k identifies the kth
vertex in the list V. An analogous encoding is used to describe each
output submesh M;=(V;,T;). In the remainder, we distinguish
between local indexes and global indexes: a local index k in a
submesh M;=(V;,T;) identifies the kth vertex in the list Vj,
whereas a global index j identifies the jth vertex in the overall V.

Our solution requires two integer parameters: the number of
vertices N, that we wish to assign to each submesh (based on the

Fig. 1. Distributed simplification. (a) Input mesh. (b) Independent sets of submeshes. (c)-(e) Simplification steps. (f) The final output.



Download English Version:

https://daneshyari.com/en/article/442531

Download Persian Version:

https://daneshyari.com/article/442531

Daneshyari.com


https://daneshyari.com/en/article/442531
https://daneshyari.com/article/442531
https://daneshyari.com

