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a b s t r a c t

A classical problem in many computer graphics applications consists in extracting significant zones or points
on an object surface, like loci of tangent discontinuity (edges), maxima or minima of curvatures, inflection
points, etc. These places have specific local geometrical properties and often called generically features. An
important problem is related to the scale, or range of scales, for which a feature is relevant. We propose a new
robust method to detect features on digital data (surface of objects in Z3, which exploits asymptotic properties
of recent digital curvature estimators. In Coeurjolly et al. [1] and Levallois et al. [1,2], authors have proposed
curvature estimators (mean, principal and Gaussian) on 2D and 3D digitized shapes and have demonstrated
their multigrid convergence (for C3-smooth surfaces). Since such approaches integrate local informationwithin
a ball around points of interest, the radius is a crucial parameter. In this paper, we consider the radius as a
scale-space parameter. By analyzing the behavior of such curvature estimators as the ball radius tends to zero,
we propose a tool to efficiently characterize and extract several relevant features (edges, smooth and flat parts)
on digital surfaces.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

When performing geometry processing on shapes, a classical
problem in many computer graphic applications consists in delineat-
ing places with specific local geometrical information—or features—on
the shape surface. Even if no clear definition of feature on surface
stands out, prior works usually characterize a feature as a local
discontinuity distinguishable from its neighborhood. As an example,
differential quantities have been widely considered in this context as
preliminary information from which features can be extracted. How-
ever, an important problem is related to the scale (or range of scales)
for which a feature is relevant. This question leads to scale-space
analysis of shapes. Note that this concept has beenwidely investigated
in the image processing community [3].

In this paper, we propose a new robust feature extraction technique
which incorporates scale-space geometrical information and which is
dedicated to digital surfaces (boundary of objects in Z2 or Z3). We
consider raw digital data (shapes discretized on a regular grid) as an
input for twomain reasons: First, many acquisition devices (e.g. 3DMRI
images or X-ray tomography) provide such data and we do not want to

introduce approximations or interpolations by switching to a polyhe-
dral representation. Second, working on digital data allows us to
consider a mathematical framework—the multigrid convergence of
operators—dedicated to this digital model. Specific in the sense that
boundaries of volumetric objects usually lead to a large number of
surface elements. Furthermore, due to the digitization effect, digital
surfaces can be considered as approximations of continuous manifolds
with a very specific and isothetic noise model: samples are evenly
spaced but never lie on the surface, normals are not informative. This
kind of data could be problematic if it is not carefully handled when
defining differential estimators for instance. Finally, this case study is
motivated by accurate shape analysis of 3D volumetric porous material
(microstructures of snow samples, see Fig. 7). In this context, we want
to characterize geometrical discontinuities (edges) from smooth areas
and zero curvature (flat) regions in a robust way.

Related works: First of all, shape disconti-
nuities can be formalized as ridges and
valleys with differential geometry. In this
case, such discontinuities are deduced
from differential quantities of order 3 by
looking at variations of principal curvature
directions in a neighborhood [4,5]. The
final step consists in thresholding signifi-
cant angular deviation of principal direc-
tions. Such techniques provide a formal
approach to disconti nuities extraction but
are scaledependent and rely on a robust
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estimation of order 3 differentials. When dealing with noisy data or
digital data, such approaches are not relevant and cannot be
considered.

For meshes or point clouds, many approaches are based on
integral quantities computed on local patches. For instance, Pauly
et al. [6] and Clarenz et al. [7] have used Principal Component
Analysis on data points located in a given neighborhood of the
point of interest. A feature score is defined as a function of the
eigenvalues of this covariance matrix. Then, either the feature
score is simply thresholded, or the behavior of the score as a
function of the neighborhood size is analyzed. Mérigot et al. [8]
extended this approach to consider convolved covariance matrices
of Voronoi cells (Voronoi Covariance Measure or VCM). Threshold-
ing a ratio of VCM eigenvalues leads to a robust extraction of edges
on point clouds or meshes. Such approaches produce interesting
results at a fixed scale or for smooth objects. However, scale-space
analysis is not fully integrated in these frameworks. Furthermore,
even if ratios of covariance matrix eigenvalues are related to
principal curvatures, the geometrical interpretation of scores is
not straightforward. In the experimental section, we provide more
details on this approach.

In a similar way, Park et al. [9] have proposed a Tensor-Voting
strategy on local surface patches. They used the scale-space behavior
of the tensor vote when the neighborhood size increases, in order to
extract edges on point clouds. As shown in the experiments, this
technique is very sensitive and does not provide sufficiently robust
results on digital surfaces. Mellado et al. [10] have introduced a fast
least square spherical fitting approach to a point cloud to create a
multi-scale feature score. Again, the scale-space parameter is the
neighborhood size considered in the fitting. Even if this feature score
is qualitatively relevant, it is not directly related to some geometrical
information. Furthermore, when used on digital data, such technique
fails to provide a precise localization of features.

Finally, features can be extracted following a spectral analysis
of the shape from eigenvalues of the surface Laplacian matrix [11–
13]. In this context, features are characterized by spectral quan-
tities which are locally stable and distinguishable from its neigh-
borhood. Such techniques are very promising but drawbacks exist
for digital surfaces. First, since our surfaces have a large number of
elements, computing the eigenvalues of the Laplacian matrix could
be very computationally expensive. Another bottleneck relies on
the fact that for digital surfaces, the isothetic nature of the
Euclidean embedding (digitization on axis aligned grid) makes
the metric not well embedded in the discrete Laplacian operator.
Indeed, if we consider the DEC formulation or simply the cotan
approach to define a discrete Laplacian operator on the digital
surface embeddings, the staircase effect of the digitization makes
the metric not well described by the geometrical embedding of the
surface. For example, a consequence is that heat diffusion obtained
by this operator produces anisotropic artifacts (ellipsoidal isocon-
tours on a digital plane with normal vector ð1;1;0ÞT for instance).
On digital surfaces, a discrete Laplacian operator with correct
intrinsic metric information has to be defined.

Contributions: We propose a robust scale-space feature selector
that classifies digital surface elements into three categories: edge,
smooth or flat. This feature selector is built upon digital curvature
estimators and relies on their theoretical multigrid convergence
properties. Since these estimators are parametrized by the size of
their ball of integration, i.e. a kind of scale, the feature selector
analyses curvature estimated as a function of scales. Since we
know the theoretical behavior of models edge, smooth and flat, the
feature selector chooses the model that best fits its input data. We
compare our approach on a large class of shapes with the other
above-mentioned approaches to feature detection, and we evalu-
ate their robustness to noise. Finally, we apply this feature selector
to the analysis of microstructures of 3D snow samples.

2. Preliminaries

In Geometry Processing, integral invariants have been widely
investigated to construct estimators of differential quantities on
smooth surface [14,15]. The main idea is to move a ball BR of radius
R on points x of the boundary ∂X of shape X. Then, integrals are
computed on the intersection between this ball and the shape, i.e.
on BRðxÞ \ X (see Fig. 1a for notations). More formally, by Taylor
expansion of the area and volume around the point x, 2D
curvature estimator ~κRðxÞ and 3D mean curvature estimator
~HRðxÞ can be defined respectively as [14]

~κRðX; xÞ ¼def
3π
2R

�3ARðxÞ
R3 ; ~HRðX; xÞ ¼def

8
3R

�4VRðxÞ
πR4 ; ð1Þ

where X �R2 (resp. R3) is a sufficiently smooth shape. Here ARðxÞ
is the area and VRðxÞ the volume of BRðxÞ \ X (i.e. we integrate the
unit constant function on BRðxÞ \ X). ~κRðX; xÞ and ~HRðX; xÞ values
converge to expected ones (respectively curvature κ and mean
curvature H) as R tends to zero [14], since

~κRðX; xÞ ¼ κðX; xÞþOðRÞ; ~HRðX; xÞ ¼HðX; xÞþOðRÞ: ð2Þ
Similarly, principal curvatures can be estimated by computing

the two greatest eigenvalues λ1 and λ2 of the covariance matrix of
BRðxÞ \ X [14]

~κ1ðX; xÞ ¼def 6ðλ2�3λ1Þ
πR6 þ 8

5R
þOðRÞ; ð3Þ

~κ2ðX; xÞ ¼def 6ðλ1�3λ2Þ
πR6 þ 8

5R
þOðRÞ: ð4Þ

Using similar integration principles, several estimators of various
differential quantities can be defined. Refer to [15,16] for an
overview.

2.1. Integral based digital curvature estimators

In our context, we consider digital shapes (any subset of Zd)
and boundaries of digital shapes. We denote by DhðXÞ the Gauss
digitization of X in a d-dimensional grid with grid step h, i.e.
DhðXÞ ¼ X \ ðhZÞd. For such digitized set Z, BdðZÞ denotes its
topological boundary, seen as a cellular Cartesian complex (see
Fig. 1b). It is thus composed of 0-cells and 1-cells (resp. pointels
and linels), and, for d¼ 3, with 2-cells (surfels), embedded in the
digital grid.

Before going further, we define the 2D digital curvature
estimator κ̂R, the 3D digital mean curvature estimator ĤR and
the 3D digital principal curvature estimators κ1R and κ2R on Z �Z2

or Z �Z3.

Fig. 1. Integral in variant computation (a) and notations (b) in dimension 2 [1].
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