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a b s t r a c t

We present a novel approach to offset solids in the context of fabrication. Our input solids can be given
under any representation: boundary meshes, voxels, indicator functions or CSG expressions. The result is
a ray-based representation of the offset solid directly used for visualization and fabrication: we never need
to recover a boundary mesh in our context.

We define the offset solid as a sequence of morphological operations along line segments. This is
equivalent to offsetting the surface by a solid defined as a Minkowski sum of segments, also known as a
zonotope. A zonotope may be used to approximate the Euclidean ball with precise error bounds.

We propose two complementary implementations. The first is dedicated to solids represented by
boundary meshes. It performs offsetting by modifying the mesh in sequence. The result is a mesh
improper for direct display, but that can be resolved into the correct offset solid through a ray
representation. The major advantage of this first approach is that no loss of information – re-sampling –

occurs during the offsetting sequence. However, it applies only to boundary meshes and cannot mix
sequences of dilations and erosions. Our second implementation is more general as it applies directly to
a ray-based representation of any solid and supports any sequence of erosion and dilation along
segments. We discuss its fast implementation on modern graphics hardware. Together, the two
approaches result in a versatile tool box for the efficient offsetting of solids in the context of fabrication.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Morphological operations [1] – such as erosions and dilations –
are important operations in solid modeling [2,3]. In the context of
fabrication, erosions and Boolean differences can be used for
example to hollow a solid or create a mold, while closing opera-
tions can remove small holes in a model. Fig. 1 illustrates a few
morphological operations obtained by our method.

Many approaches consider the offset surface obtained after the
dilation or erosion of the solid by the Euclidean ball of radius d
centered at the origin. The offset surface is the set of points at
distance d from the object boundary. The exterior (resp. interior)
offset is the subset of the offset surface lying outside (resp. inside)
the solid. The exact computation of offset surfaces for general
inputs is difficult. Therefore, a number of approximations have
been proposed (see Section 2). However, many of these approx-
imations either restrict the type of input, perform aggressive
re-sampling, or require computationally heavy and relatively
complex algorithms [4].

In this work we consider sequences of erosions and dilations
along line segments. It is worth noting that the result of a sequence
of dilations along segments is equivalent to a Minkowski sum
between the solid and an object known as a zonotope. The zonotope
is defined as the Minkowski sum of the set of segments.

A zonotope is usually sufficient for our target applications in
manufacturing: the main differences with a ball are essentially
aesthetic (see Fig. 12), and often only impact hidden surfaces
when used for molds and hollowing. Nevertheless, there are
known algorithms to approximate a ball with a zonotope within
a prescribed error bound [5,6]. Sequences of erosions and dilations
along line segments therefore provide a general framework to
perform complex morphological operations. This includes closings
and openings, obtained by mixing dilations and erosions in
sequence.

Our work is focused on obtaining ray-based solid representa-
tions [7] for direct visualization and fabrication – typically through
slicing and additive manufacturing [8,9]. We do not attempt to
recover a boundary representation of the result. Our modeler takes
any solid representation as an input – boundary meshes, voxels,
CSG expressions – and converts them into ray-based representa-
tions for visualization and fabrication. The conversion occurs at
the resolution of the screen or manufacturing process, therefore
minimizing the loss of information due to sampling. Our modeler
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is based on a fast GPU implementation, enabling the construction
of ray-based representations at high resolutions (see Section 7).

Contributions: The key observation of our work is that the
ray representation of solids is amenable to a simple and fast
implementation of morphological operations with line segments,
and as a consequence, to sequences of morphological operations
with zonotopes. To the best of our knowledge, no previous work
considers morphological operations between zonotopes and ray-
based solid representations. Unlike most of the existing methods,
our technique avoids any explicit treatment of topological changes.
Erosions and dilations can be combined in any order to achieve
complex operations.

We propose two complementary techniques. First, in Section 4
we introduce an efficient algorithm to perform morphological
operations on a ray-based representation of a solid. The advantage
of this approach is that it applies to any solid that can be captured
by a ray-based representation. Its drawback stems from the
sampling resolution that approximates the solid at each step. We
discuss error bounds for the process in Section 4.3. In our context,
and thanks to the high computational efficiency of the presented
technique, we can afford the use of a resolution matching that of
the manufacturing process of the final object.

Second, we propose in Section 5 a specialized approach for
boundary meshes, which postpones the conversion to a ray-based
representation to after an entire sequence of dilations or sequence
of erosions, thereby removing any re-sampling error due to
intermediate steps.

The time complexity of the presented algorithms is bounded by
the complexity of the solid surface, instead of its volume. Thus,
their performance is expected to scale better than voxelization

methods. We provide an implementation of all of our algorithms
which are both simple to implement and highly parallel.

2. Related work

This section reviews existing approaches for the computation
of offset surfaces in general, and then focuses on methods using
ray-based representations.

Computing offset surfaces: Early approaches rely on convolu-
tions to compute offset surfaces and Minkowski sums. These
methods obtain a superset of primitives of the offset surface that
are trimmed and filtered to form the final boundary [10]. Evans
and Koppelman [11] compute the Minkowski sum of a polyhedral
object along a sequence of translational sweeps, and propose to
approximate the Euclidean ball with a zonotope for surface
offsetting. To the best of our knowledge this is the only previous
approach that considers zonotopes for morphological operations,
but it focuses on generating polyhedral results while our focus is
on ray-representations. Kaul and Rossignac [12] presented a set of
criteria to filter the primitives that do not belong to the Minkowski
sum. Peternell and Steiner [13] presented a convolution algorithm
for objects with piecewise boundaries. Campen and Kobbelt [14]
introduced an exact approach for Minkowski sums between
polyhedra that also culls a superset of primitives. Convolution
methods usually suffer from geometric robustness issues.

The offset surface can also be extracted from the distance field
of the object surface, as it implicitly represents offset surfaces.
Frisken et al. [15] presented the adaptively sampled distance-
fields, which among other operations, is able to perform surface
offsetting. Varadhan and Manocha [16] approximate the Min-
kowski sum with a distance field isosurface extraction, guarantee-
ing a Hausdorff distance bound on the approximation. Pavić and
Kobbelt [17] traverse an octree and split each cell which is
potentially intersected by the offset surface, in order to recover
it. Lee et al. [18] presented an accurate method to compute the
distance field, which is able to render offset surfaces by consider-
ing a union of balls. The main drawback of distance field methods
is that they usually require high amount of memory in order to
ensure accuracy.

Offset surfaces can also be computed from point-based repre-
sentations. Chen et al. [19] generate a set of candidate points that
are used to obtain a voxelization of the offset surface. Lien et al.
[20] and Netaluri and Shapiro [21] perform the Minkowski sum
between two point-based surfaces. The approach explicitly distin-
guishes the interior and boundary points of the Minkowski sum.
Recently, Calderon and Boubekeur [22] introduced a morpho-
logical analysis framework for point clouds, which is able to
perform morphological dilations and erosions. These operations
remain expensive on point sets as the interior of the solid is not
explicitly available.

A last family of methods generates a voxelization of the offset
surface. Li and McMains [23,24] and Leung et al. [25] presented
GPU approaches to compute the Minkowski sum of polyhedra by
computing pairwise Minkowski sums, and obtaining a voxelization
of its union. The memory requirements of these methods rise
rapidly as the voxelization resolution increases. In addition, the
error tends to be larger than that of a ray-based approach where
the sampling directions can freely vary.

Surface offsetting with ray-based representations: To the best of
our knowledge, the dexel structure [7] was the first introduced ray
representation of solids. For a single direction and a uniform
grid of rays parallel to that direction, the dexel structure stores
the intervals of the rays lying inside the solid; these intervals
are called dexels (depth elements). The G-buffer [26] extended the

Fig. 1. Segment morphological operations with the specialized approach for
meshes (left column) and the generic algorithm (right column). The mesh approach
shows the dilation and erosion with a truncated octahedron (zonohedra, see
Section 6). Notice the small erosion successfully applied to the raptor model. The
generic approach is used to perform a closing and an opening also with the
truncated octahedron.
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