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a b s t r a c t

This paper proposes an accurate and computationally efficient solver of the heat equation ð∂tþΔÞ
Fð�; tÞ ¼ 0, Fð�;0Þ ¼ f , on a volumetric domain, through the (r,r)-degree Padé-Chebyshev rational
approximation of the exponential representation Fð�; tÞ ¼ expð�tΔÞf of the solution. To this end, the
heat diffusion problem is converted to a set of r differential equations, which involve only the Laplace–
Beltrami operator, and whose solution converges to Fð�; tÞ, as r-þ1. The discrete heat equation is
equivalent to r sparse, symmetric linear systems and is independent of the volume discretization as
a tetrahedral mesh or a regular grid, the evaluation of the Laplacian spectrum, and the selection of a
subset of eigenpairs. Our approach has a super-linear computational cost, is free of user-defined
parameters, and has an approximation accuracy lower than 10�r. Finally, we propose a simple criterion
to select the time value that provides the best compromise between approximation accuracy and
smoothness of the solution.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The heat kernel plays a central role in several applications, such
as surface [3,16] and image [34,40] smoothing, shape segmenta-
tion [12] and comparison [5,6,14,25,26,35]. Furthermore, the
wavelet operator [17], the geodesic [11] and diffusion [4,10,27]
distances have been recently rewritten in terms of the heat kernel.
Among its main properties, we mention the intrinsic and multi-
scale encoding of the input shape, the invariance to isometries, the
shape-awareness, the robustness to noise and tessellation.

In several applications, volumetric representations and descrip-
tors are more suited than a two-dimensional manifold to model
the shape invariance under rigid and elastic transformations.
Furthermore, tetrahedral meshes are efficiently generated from
surfaces [2,33] and are a standard volumetric representation for
the discretization of differential equations. Due to the high
computational cost for the solution to the heat equation, previous
work has been mainly focused on the diffusion kernel and distance
on surfaces rather than on volumes.

Given the complexity of volumetric computation, several alter-
natives to the heat kernel were proposed in the literature. FEM
discretizations [1] of the heat equation tessellate the volume with
a voxel grid or cuboid voxels [30] and apply a 6-neighborhood
stencil [23,29] or a geometry-driven approximation field [22,36].
These approximations provide a low accuracy of the solution in

a neighbor of the volume boundary, which is generally repre-
sented as a triangle mesh. Even though multi-resolution prolonga-
tion operators [39] and Chebyshev polynomials [27,28] can be
extended to volumes, they have not been applied to the computa-
tion of the volumetric heat kernel or to the selection of the optimal
time value. Additionally, the multi-resolution simplification of the
input volume is time-consuming and the selection of the volume
resolution with respect to the expected approximation accuracy is
generally guided by heuristics. Further approaches extend the
solution to the heat equation computed on the input surface to
its interior through barycentric coordinates or a non-linear
approximation, as done for the Laplacian [31,32] and harmonic
[21,24] maps. Note that these methods do not intend to approx-
imate the heat kernel quantitatively, but provide alternative
approaches that qualitatively behave like the heat kernel on
volumes.

Overview and contribution. We propose an accurate and com-
putationally efficient solver of the heat equation ð∂tþΔÞFð�; tÞ ¼ 0,
Fð�;0Þ ¼ f , on a closed and connected manifold M of R3, such that
its boundary ∂M is a smooth and closed two-dimensional mani-
fold. We also introduce a simple criterion to select the time value
(or scale) that provides the best compromise between approxima-
tion accuracy and smoothness of the solution.

The idea behind our approach (Section 2) is to apply the (r,r)-
degree Padé-Chebyshev rational approximation to the exponential
representation Fð�; tÞ ¼ expð�tΔÞf of the solution to the heat
equation. Then, the diffusion problem is converted to a set of r
differential equations, which involve only the Laplace–Beltrami
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operator, and the resulting solution converges to Fð�; tÞ, as r-þ1.
Through the proposed approach, the solution to the heat equation
is approximated in a low-dimensional space generated by rþ1
functions, which are induced by the input volume, the initial
condition f, and the selected time value. Furthermore, the approx-
imation accuracy is lower than 10�r (e.g., r¼5,7). In comparison,
the Laplacian eigenfunctions only encode the domain geometry
and it is difficult to select the number of eigenpairs necessary to
achieve a given approximation of Fð�; tÞ with respect to t and f.

While a discretization of the heat kernel on a voxel grid is
accurate enough for the evaluation of diffusion descriptors [23,29],
which are quantized and clustered in bags-of-features, we focus
on the computation of the heat kernel on tetrahedral meshes
(Fig. 1). Our discretization (Section 3) is equivalent to a set of r
sparse, symmetric linear systems and is applied to any representa-
tion of the input domain and of the Laplace–Beltrami operator.
Furthermore, it properly encodes the local and global features in
the heat kernel and bypasses the computation of the Laplacian
spectrum. For a given time value, the overall computational cost of
the r-degree Padé-Chebyshev rational polynomial is OðrnÞ, where
n is the number of volume vertices. Indeed, our approximation is
competitive with respect to multi-resolutive simplification/pro-
longation operators, the Euler backward method, and the trun-
cated spectral approximation.

As main novelties with respect to previous work [27], we apply
the Padé-Chebyschev approximation to the more complex case of
the heat kernel on volumes, also addressing the convergence of
the approximation scheme and the selection of the time value.

For our experiments (Section 4), we consider volumetric diffu-
sion smoothing, which is typically applied to thin film evolution
[19], to the analysis of multi-material volume grids and their
interfaces [20], and to volumetric shape deformation [22]. Other
possible applications, which are not addressed in this paper,
include volume-based approximation and the evaluation of volu-
metric descriptors.

2. Volumetric heat equation

Let us consider the heat equation ð∂tþΔÞFð�; tÞ ¼ 0, Fð�;0Þ ¼ f , on
a closed, connected manifold M of R3, with f : M-R and ∂M
smooth, closed two-dimensional boundary of M. Then, the solu-
tion Fðp; tÞ ¼ Ktðp; �Þ⋆f is the convolution between the heat kernel
Ktðp;qÞ≔ð4πtÞ�3=2 expð� Jp�qJ22=4tÞ and f.

Our approach applies the Padé-Chebyshev rational approxima-
tion to the exponential representation Fð�; tÞ ¼ expð�tΔÞf of the
solution to the heat equation. According to [15], on Rþ the best

(r,r)-degree rational polynomial approximation of expð�xÞ with
respect to the L1 norm is crrðxÞ ¼ α0þ∑r

i ¼ 1αiðx�θiÞ�1, with poles
fθigri ¼ 1 and coefficients fαigri ¼ 1. These values are precomputed for
any degree through standard numerical routines; for more details,
we refer the reader to [8]. Indicating with idð�Þ the identity
operator, the function

Fð�; tÞ ¼ expð�tΔÞf � α0f � ∑
r

i ¼ 1
αiðΔþθiidÞ�1f

¼ α0f þ ∑
r

i ¼ 1
αigi; ðtΔþθiidÞgi ¼ � f ; ð1Þ

is approximated by a linear combination of the solutions to
r equations induced by the Laplace–Beltrami operator. The result-
ing approximation of Fð�; tÞ belongs to the linear spaceH generated
by f and fgigri ¼ 1, which depend on the input volume, the initial
condition f, and the selected time value t. In comparison, the
Laplacian eigenfunctions fðλn;ϕnÞgþ1

n ¼ 0, Δϕn ¼ λnϕn, encode only the
domain geometry and it is difficult to select the number k of
eigenpairs that are necessary to achieve an accurate approxima-
tion of Fð�; tÞ through the truncated spectral representation
Fð�; tÞ �∑k

n ¼ 1expð�λntÞ〈f ;ϕn〉2ϕn. Furthermore, a larger number
of eigenpairs is necessary to accurately recover the solution at
small time values.

Convergence of the approximation. Introducing the approximate
solution Frð�; tÞ≔∑þ1

n ¼ 0crrðλnÞ〈f ;ϕn〉2ϕn to the (volumetric) heat
equation induced by the r-degree Padé-Chebyshev polynomial crr,
we show that the sequence ðFrð�; tÞÞþ1

r ¼ 0 converges to Fð�; tÞ. First of
all, we notice that the approximation Frð�; tÞ is well-posed; in fact,
Jcrr J1r1 and JFrð�; tÞJ2r J f J2. According to [38], the L1 error
between the exponential map and its rational polynomial approx-
imation is bounded by the uniform rational Chebyshev constant σrr,
which is independent of the evaluation point, and lower than 10�r.
Applying the upper bound

‖Frð�; tÞ�Fð�; tÞ‖22r Jcrrð�tÞ�expð�t�ÞJ21 ∑
þ1

n ¼ 0
j〈f ;ϕn〉2j2

rσ2rr ∑
þ1

n ¼ 0
j〈f ;ϕn〉2j2r10�2r J f J22;

we deduce that limr-þ1Frð�; tÞ ¼ Fð�; tÞ.
While the selection of a fixed number of eigenpairs does not

allow us to estimate the resulting approximation accuracy, the
projection of Fð�; tÞ on the linear space generated by ff ; g1;…; grg
guarantees an accuracy lower than 10�r. Finally, this approxima-
tion is stable to a perturbation f þe of the initial condition; in fact,
the variation of the corresponding solutions ~F rð�; tÞ, Frð�; tÞ is

Fig. 1. Volumetric heat kernel. Color map of the solution to the volumetric heat equation at two time values and computed with the Padé-Chebyshev approximation of
degree r¼7; the initial condition takes value 1 at a point of the lips and 0 at the other vertices of the tetrahedralization. The color map varies the hue component of the hue-
saturation-value color model; the colors begin with red, pass through yellow, green, cyan, blue, and magenta, and return to red. At scale t¼1, the level-sets on the volume
boundary correspond to iso-values uniformly sampled in the range of the solution restricted to the points of the volume boundary. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this paper.)
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