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a b s t r a c t

Biquadratic (bi-2) splines are the simplest choice for converting a regular quad meshes into smooth
tensor-product spline surfaces. Existing methods for blending three, five or more such bi-2 spline
surfaces using surface caps consisting of pieces of low polynomial degree suffer from artifacts ranging
from flatness to oscillations. The new construction, based on reparameterization of the bi-2 spline data,
yields well-distributed highlight lines for a range of challenging test data. The construction uses n pieces
of degree bi-4 (bi-3 when nAf3;5g) and applies both to primal (Catmull–Clark-like) and dual (Doo–
Sabin-like) input layouts.

Crown Copyright & 2014 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Many mechanical parts and inner surfaces require only first
order smoothness, i.e. continuity of the normal. The simplest
tensor-product patch type to match the requirements is the bi-
quadratic (bi-2) spline patch. Keeping the degree lower than bi-3
for the bulk of the surface simplifies downstream use, say for iso-
geometric computations, and reduces the chance of introducing
unwanted visible ripples and oscillations.1

A classical challenge, illustrated in Fig. 1, is to smoothly blend, by a
surface ‘cap’, three, five or more bi-2 spline patches. Numerous
publications in the late 1980s and early 1990s (see the literature
survey in Section 2 below) addressed the algebraic constraints for
smoothness, but did not focus on shape. To illustrate this claim, we
analyze the canonical representatives ofthe two main alternatives for
such blends: subdivision algorithms and Bézier patch constructions.
The shape of surfaces generated by the subdivision naturally asso-
ciated with bi-2 surfaces, the Doo–Sabin algorithm [2], suffers from
oscillations near and flatness at the center of the cap (Fig. 2b).
Similarly, older (1990s-style) multi-patch Bézier caps of low degree,
such as the bi-3 construction of [3] in Fig. 2e, result in poorly-spaced
and poorly shaped highlight lines. While our surfaces will not be
curvature continuous throughout, as are recent more costly construc-
tions such as [4,5], they are of low polynomial degree, show
remarkably good highlight line distribution for a gallery of challenging

test data, and use fewer patches than other low-degree CAD-compa-
tible constructions (cf. [6,7]).

Contribution: The focus and contribution of this paper is a
simple, yet subtle recipe for constructing low-degree multi-sided
surface caps that complete a bi-2 C1 spline complex and do not
suffer from the highlight line artifacts of existing methods. The
construction applies both to primal (Catmull–Clark-type) and dual
(Doo–Sabin-type) input layouts, i.e. to quad meshes including
nodes that have na4 neighbors and to faces with na4 edges.

The construction is a recipe in that it expresses all BB- (Bernstein–
Bézier) coefficients of the cap directly in terms of the input mesh. No
equations have to be solved at runtime: the final surface is a linear
combination of precomputed generating functions.

The construction is subtle and different from older construc-
tions in that it (i) leverages carefully chosen re-parameterizations β
(a bi-variate change of variables) of the Hermite data b (position
and derivative) provided to the cap by the bi-2 splines surround-
ing the cap and (ii) enforces curvature continuity at the central
point. As illustrated in Fig. 3 and explained in more detail in
Section 4.1, reparameterizing b yields better results, visible even
without highlight lines. Compare Fig. 3e to f.

Overview: Section 2 reviews the literature and motivates the
features of the new algorithm. Section 3 formally introduces the
problem to be solved: smoothly filling a multi-sided hole in a bi-2
spline complex. Section 4 introduces the n-sided cap. By default,
the cap consists of n patches of degree bi-4, one per sector; when
nAf3;5g, well-shaped caps of degree bi-3 per sector can be
substituted (Section 4.2). (Appendix C demonstrates that if we
split each sector, into 2�2 pieces, degree bi-3 work also for n45,
albeit at the cost of slightly lower quality than the main bi-4
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construction of Section 4.) Section 5 demonstrates the quality of
the new G1 caps when completing bi-2 spline models.

2. Background and motivation

Developed in the late 1980s and early 1990s, the theory of
geometric continuity (G1 continuity [8,9]) provides a foundation for
solving the problem of completing a spline surface with tangent
plane continuity where n surface pieces meet. The theory spawned a
number of innovative algorithms: cap constructions with built-in
singularities [10,11]; normalized by averaging, hence rational surface
extensions [12]; restrictions of higher-variable constructions [13];
splitting of the domain into three-sided patches [14–16] and global
manifold constructions [17,18] employing variants of simplex splines
[19], to name just a few. Each class of methods has to overcome the
challenge that an object of genus other than one, i.e. topologically
different from the torus, does not admit a globally regular, shift-
invariant tiling but must have one or more extraordinary points
(topological singularities). In fact, when the surface pieces are twice
continuously differentiable, all constructions have to solve a vertex-
enclosure problem, see e.g. [9]: at even-valence vertices, a matrix of
smoothness constraints (in terms of the mixed derivatives that one
would naturally associate with the solution) is not invertible.

With the exception of Gregory's singular construction [11],
none of these innovative solutions are known to have been
adopted by industry. There are multiple reasons for this. First,
the methods listed are not compatible with the CAD-industry's
NURBS standard. Second, most CAD packages follow a different
paradigm to fill multi-sided holes. Solidworks, for example, fits the
graph of a function to the data along a boundary and trims off

extraneous parts of the resulting many-knot spline surface. The
output surfaces may not be watertight and require ‘healing’ before
FEM analysis can be applied. The entertainment industry, led by
Pixar, has adopted Catmull–Clark subdivision as a modeling tool.
Subdivision surfaces are conceptually simple in that they evoke
mesh refinement. Catmull–Clark (CC) [20] subdivision provides
sufficient quality for animation but has not entered main stream
CAD processing both because it only generalizes uniform poly-
nomial splines and because the resulting surfaces consist of
infinitely many pieces. Moreover, the quality of CC subdivision
surfaces near the limit point is insufficient [21] (see also Fig. 10a).
Doo–Sabin subdivision has had little exposure since it is a ‘dual’
subdivision method, i.e. shifts the faceted approximation under
refinement. The severe artifacts of Doo–Sabin subdivision (e.g.
Fig. 2b) do not seem to have been documented before.

There is a growing class of hole-filling constructions that are
compatible with tensor-product splines. While constructions of
least degree, bi-2 [22], cannot correctly handle higher-order
saddles, but generate flat spots, the 1990s constructions of degree
bi-3, e.g. [23,3], formally satisfy the smoothness constraints.
However, as illustrated in Figs. 2 and 3, the shape of the surfaces
generated by these approaches often disappoints. The current
paper shines some light on the causes by emphasising the need
for boundary data reparameterization.

To improve shape, functionals of the type
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Fig. 1. Pairwise joining and capping a collection of bi-2 spline surfaces. (a) Input: one planar and four cylindric pieces. (b) The input is pairwise blended by bi-2 splines and the
remaining gap is filled by a G1 cap consisting of five patches of degree bi-3. (c) Output and (d) surface interrogation.
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