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a b s t r a c t

Reeb graphs are topological graphs originating in Morse theory, which represent the topological
structure of a manifold by contracting the level set components of a scalar-valued function defined on
it. The generalization to several functions leads to Reeb spaces, which are thus able to capture more
features of an object. We introduce the layered Reeb graph as a discrete representation for Reeb spaces of
3D solids (embedded three-dimensional manifolds with boundary) with respect to two scalar-valued
functions. After that we present an efficient algorithm for computing the layered Reeb graph, which uses
only a boundary representation of the underlying three-dimensional manifold. This leads to substantial
computational advantages if the manifold is given in a boundary representation, since no volumetric
representation has to be constructed. However, this algorithm is applicable only if the defining functions
satisfy certain conditions.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A Reeb graph [1] is a topological data structure which is able to
capture the topology of shapes. Considering a scalar-valued func-
tion defined on the domain of interest, the level sets of this
function may consist of several components, which evolve while
sweeping through the function values. The Reeb graph encodes
the evolution of these level set components, which are sometimes
referred to as contours in the literature, by collapsing each contour
to a point. Typical applications of Reeb graphs include shape
abstraction [2–4], shape recognition [5–9] and shape decomposi-
tion [10,11], but they are also applied e.g. to loop detection [12],
landscape modeling [13], to guide hex-meshing [14] or in the
analysis of trajectories [15] and point data [16].

Generalizing this approach to vector-valued defining functions
(or, equivalently, to several scalar-valued functions) leads to Reeb
spaces [17], which are thus able to capture more features of a
shape. However, they are a more complicated structure. Consider
for example the Reeb space of a three-dimensional manifold with
respect to two functions. In general it consists of several connected
surface patches, which makes its computation and storage more
difficult. As our first goal, we propose the layered Reeb graph for
this situation, which encodes the information captured by the
Reeb space using two layers of Reeb graphs, see Fig. 1.

We demonstrate that the Reeb graph of a general solid object
does not capture the topology of the object. In contrast, the Reeb
space with respect to two functions, and therefore also the layered
Reeb graph proposed in this paper, is able to do so. Besides, the
layered Reeb graph can easily be embedded into the object. From
this embedding, a skeletal structure of the object can be derived.
To our knowledge, no algorithm for the computation of Reeb
spaces has been proposed in the literature, and our algorithm for
the layered Reeb graph is a first step in this direction. We expect
that the Reeb space will find various applications in shape
recognition, classification and decomposition.

The existing literature on Reeb graphs describes several algo-
rithms, which compute the Reeb graph of a manifold with
boundary with respect to a given scalar-valued function, typically
using a simplex mesh of the manifold as input, or using a voxel-
based description, as in [18]. However, if a three-dimensional
manifold is given in a boundary representation, a volumetric
representation has to be generated to apply these approaches,
since the Reeb graph of the manifold and the Reeb graph of its
boundary surface are, in general, different objects.

As our second goal, we describe a construction algorithm for
the layered Reeb graph (and, implicitly, for the Reeb graph), which
uses only a boundary representation of the manifold. This leads to
substantial computational advantages, since the generation of a
volume representation is costly, and a boundary representation
typically has a smaller data volume, e.g. comparing the number of
elements in a surface- and volume mesh. However, the class of
defining functions has to be restricted.
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The remainder of this paper is structured as follows. In the next
section, we will review related work on Reeb graphs before
defining the layered Reeb graph in Section 3. In Section 4 we
identify the conditions on the defining functions which we will
need to construct the layered Reeb graph from a boundary
representation. After that, we study the Jacobi set and its relevance
for the layered Reeb graph in Section 5. Finally, our construction
algorithm is described in Section 6 and we present some results in
Section 7.

2. Related work

Several algorithms for the computation of Reeb graphs are
described in the literature, see e.g. Biasotti et al. [19,20] or
Edelsbrunner and Harer [21] for overviews.

The first known algorithm by Shinagawa and Kunii [22] con-
structs the Reeb graph in any dimension by explicitly maintaining
the level sets of the function while sweeping through the function
values. The level sets are updated at every vertex, which results in
an Oðn2Þ runtime. This approach was improved by using more
efficient data structures for storing the level sets, by Cole-
McLaughlin et al. [23] and Brandolini and Piastra [24] for two-
dimensional manifolds and by Doraiswamy and Natarajan [25] and
Parsa [26] for higher dimensions.

Sampling-based algorithms analyze the evolution of level sets
by dissecting the domain of interest at certain (e.g. uniformly
distributed) function levels and analyzing their connectivities, e.g.
by Hilaga et al. [8], Attene et al. [2], Berretti et al. [10] and Biasotti
et al. [6]. They are, in principle, able to produce a multilevel
representation of a shape by decreasing the distance between
analyzed function levels in every step. However, they are not
guaranteed to compute the correct Reeb graph, since they may
loose important features if their resolution is chosen too coarse
unless an additional check is included.

Other approaches exploit the vital relation between the Reeb
graph and the critical points of the defining function. Patanè et al.
[27] successively slice a given two-dimensional manifold at critical
function levels and extract the adjacencies between the saddle
points by flooding through surface triangles. Berretti et al. [11]
successively merge level sets that are represented by the same arc
in the Reeb graph. Other authors first identify all critical points and
then find connections between them using monotone paths. For
example, Doraiswamy and Natarajan [28] use paths of adjacent
triangles of a simplex mesh of arbitrary dimension, and Strodthoff

et al. [29] use monotone edge paths to construct the Reeb graph of
a three-dimensional manifold in boundary representation.

The loop-free variant of Reeb graphs, called contour trees,
can be constructed more efficiently than the Reeb graph, and
there are many applicable algorithms described in the literature.
For example, Carr et al. [30] first sweep through the function
values twice to construct the split- and join-tree, which are then
put together to form the contour tree. Chiang et al. [31] improved
this approach by avoiding to sort all input vertices. Instead, they
first identify component-critical points, which they connect to
split- and join-trees using monotone paths. This results in a
construction time of Oðnþt log tÞ with t denoting the number of
component-critical points.

Due to the efficient possibilities for constructing contour trees,
there have been efforts to reduce the construction of Reeb graphs
to the computation of contour trees. Tierny et al. [32] use the Reeb
graph of an object to find all loops in the object, and introduce cuts
to open the loops of the Reeb graph. Thus they produce one
manifold with a loop-free Reeb graph, which can be handled by a
contour tree algorithm. Similarly Doraiswamy and Natarajan [33]
identify saddle points where they cut the object into several parts
with loop-free Reeb graphs to which the algorithm of [30] is
applied individually.

Some recent computation algorithms for the Reeb graph do not
fit into one of these frameworks. Pascucci et al. [34] introduce an
on-line algorithm, which constructs the Reeb graph of a simplex
mesh while streaming the input data. This algorithm performs
well in practice and is applicable to large meshes since it does not
require the whole input to be stored in memory. Harvey et al. [35]
propose a randomized algorithm for simplex meshes which com-
putes the Reeb graph in Oðn log nÞ expected time by successively
collapsing triangles in random order. Furthermore, Dey and Wang
[36] study the approximation of the Reeb graph for a manifold
given by a point sample, and a simplified Reeb graph was
introduced in [24].

Reeb graphs are defined via a scalar function on a given domain
of interest. The extension to several functions leads to Reeb spaces.
They were introduced by Edelsbrunner et al. [17], but appear to be
little researched by now. Reeb spaces are able to capture more
features of an object than Reeb graphs, which makes them an
interesting object of study. However, as mentioned before, they
possess a more complicated structure than Reeb graphs, and are,
therefore, harder to handle. We introduce a different representa-
tion for a special class of Reeb spaces using two layers of Reeb
graphs, which we call layered Reeb graphs, and an algorithm to
compute this object.
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Fig. 1. Example of a layered Reeb graph. Left: Object with the blue curves indicating the Jacobi set, which guides our construction, see Section 5. Center-left: For each level set
component of the height function, a Reeb graph with respect to a second function is shown, which is embedded into the level set, see Definition 3. First, the level set
components A and B occur, which are joined to form C, and so on. Center-right: The Reeb graph with respect to the height function, where arcs are labeled by the capital
letters of the corresponding level set component. Right: The Reeb graphs of each level set component with respect to a second function. The primary and secondary graphs
together form the layered Reeb graph, see also Definition 3. For a detailed explanation of the labels, see Section 7.1. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this article.)
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