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Acquiring natural-looking in-betweens is a fundamental shape interpolation problem in computer
graphics. Several previous studies showed that as-isometric-as-possible interpolation is the key to
natural and intuitive results. With this presumption, this paper describes a novel method for acquiring
an isometric shape interpolation for given key-frame models. The technological and theoretical
contributions of our method lie in the introduction of a new coordinate system, isometry-invariant
intrinsic coordinates. This simplifies the nonlinear isometric interpolation into a simple linear algebraic
problem. The method is shown to yield an effective isometric interpolation of the given key-frame
models and is easy to implement. Experimental results confirm that the proposed method produces
minimal metric distortion and exhibits reasonable efficiency.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Shape interpolation is a technique for generating plausible
shapes between two or more key-frame models. The technique
is frequently used for various computer graphics applications, such
as computer animation, special effects in motion pictures, and
shape modeling and editing. In many applications, this technique
is practiced on triangular mesh models. We assume in the
following discussions that the key-frame models are already given
in the form of triangular meshes with compatible topologies.

A naive approach to shape interpolation is to linearly interpolate
the coordinate values of the corresponding vertices. However, this
approach has a critical defect: it is not invariant to the choice of
coordinate frame, i.e., not invariant to rigid motion in the model.
Further, it is not invariant to articulated motion (i.e., changes in
posture). A number of studies have attempted to overcome this
difficulty by aligning the positions and orientations of the models
prior to interpolation [1-4]. These efforts, unfortunately, do not solve
the problem completely. Indeed, it is evident from many other related
works, such as Fig. 12 in [5] or a preview of our results in Fig. 1, that
significant shape distortion remains despite this pre-alignment.

In one branch of interpolation research (e.g., [6-9]), the problem
was formulated in terms of local rigidity preservation, assuming that
the interpolation that best preserves local rigidities in the key-frame
models would generate the most plausible result. On the other hand,
some approaches such as [10] use an elasticity metric for the
interpolation calculation. However, although such schemes return
plausible results that look natural to the naked eye, metric distortions
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and unnatural effects remain (see, e.g., Fig. 2 of [11]). As stated in [11],
it is more important to preserve the local distances rather than the
local rigidity. Indeed, a number of previous works, including [11-13],
suggest the use of the as-isometric-as-possible scheme for more natural
and plausible results. Mathematically, an isometry, or distance-pre-
serving mapping, is a bijection between metric spaces that preserves
the distance between points. Typical examples of isometry are rigid-
body transformations. In a weak sense, skin deformation caused by
posture changes is also considered an isometry. Therefore, the as-
isometric-as-possible scheme attempts to minimize the length distor-
tion in an interpolated model from key-frame models.

The works mentioned above solve the interpolation problem in a
somewhat computationally expensive manner, ie., by repeatedly
solving nonlinear equations through a number of iterations. Moreover,
these methods are impractical for applications such as example-based
modeling where many exemplar models must be interpolated,
because they cannot be applied to more than two key-frame models
at once.

Such problems occur because nonlinear techniques represent a
shape naively using vertex coordinates and compute the interpolation
directly from them. Instead, it is preferable to represent a shape by its
intrinsic geometric properties, as this greatly simplifies the formula-
tion of the isometric interpolation. Differential coordinates, such as
those employed in [5,14-17], share a similar idea. They define a new
coordinate system based on the local difference in vertex positions,
normals, and other differential geometry features in the local neigh-
borhood, and compute the linear interpolation in this new intrinsic
coordinate system. Then, by reconstructing the vertex coordinates
from the intrinsic values, an interpolated model can be successfully
generated.

Although the focus of those differential coordinate approaches
is far from the essential issue of isometric deformation, these
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Fig. 1. Isometric interpolation of different human models. Yellow denotes key-frame models, and blue denotes the resultant in-betweens. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this article.)

approaches are valuable because they suggest the useful concept
of changing the variables. Motivated by this concept, we propose a
novel isometric interpolation approach based on the local intrinsic
geometry. The key to our approach is to build an invertible
mapping between the vertex coordinate representation and the
new intrinsic coordinate system, which we call isometry-invariant
intrinsic coordinates (IICs). In this configuration, isometric shape
interpolation can easily be computed as a simple linear algebraic
interpolation of coordinate values, and the corresponding geome-
try can be reconstructed using a rapid algorithm.

2. Isometry-invariant intrinsic coordinates

The fundamental theorem of surfaces states that two surfaces are
identical if and only if their first and second fundamental forms are
identical to each other [18]. Because the first and second fundamental
forms concern the local metric and curvature properties of a surface,
respectively, the fundamental theorem of surfaces suggests that a
surface can be completely described by its local lengths and curva-
tures. For discrete surfaces having a graph structure, e.g., triangular
meshes, this idea can be further developed to the theory that a
discrete surface with a graph structure can be completely determined
by its edge lengths and relative rotations between adjacent facets.

2.1. Definition

Let G={V,K} be a triangular mesh, where V is a set of Ny
points, i.e., V={v;e R’|i=1,...,Ny}, and K is a simplicial complex
containing the abstract connectivity structure. Three types of
elements, namely, vertices {i}, edges {i,j}, and faces {i,j, k}, make
up the abstract structure K. Note that every tuple in K is an
ordered collection, that s, {i,j}  {j.i}, {i.j,k} # {i,k,j}, and so on.

Before we define the IICs, let us first compose a local coordinate
frame {é, B,ﬁ} for each facet. The local frame is determined such

that n is the unit normal vector of a corresponding facet, a is the
unit vector parallel to the first edge of the facet, and the remaining
basis vector b is naturally determined from the right-hand rule.

In the configuration shown in Fig. 2, let us consider two facets,
{r,j,i} and {j,l i}, that are both in K and share the same edge,
k= {i,j} e K. In addition, let us denote the local coordinate frames
of these facets as R and L, respectively. Further, let L' be a rotated
version of L along an axis €, =(v;—v;)/(Ilvj—v;ll) so that the
normal directions of R and L' are the same. Then, from the
geometry, the relative orientation between the facets {r,j,i} and
{j,1,i} can be fully determined by only two scalar values, 6, and ¢,
where 6y is defined as the angle from L' to L around the axis €, and
¢y is the angle from R to L' around the axis parallel to the normal
direction of R. Note that —z <6, <, and 0 < ¢, < 2x.

Fig. 2. Definition of isometry-invariant intrinsic coordinates (IICs) for an edge {i,j}.
Basis vectors of local coordinate frames are denoted by red, green, and blue arrows,
in the order a, b, fi. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this article.)

According to this notion, the IICs on each edge are defined as
follows:

X =[le O pil", )

where [ is the edge length. Finally, the entire triangular mesh g is
represented by an ordered collection of the IICs:

x=[x] - xg.1" )

where N¢ is the number of edges in K.
2.2. Reconstruction of the extrinsic geometry

Although constructing the IICs from the Euclidean vertex coordi-
nates is trivial from the definition, the inverse process is slightly more
complicated. In fact, the reconstruction problem is equivalent to
determining the optimal vertex positions that satisfy the given abstract
connectivity structure, with its known edge lengths and relative angles
between adjacent facets. Including the length and angle terms in the
reconstruction process inevitably introduces nonlinearity, as they
include square roots and trigonometric functions.

Indeed, some relevant studies use the edge lengths and relative
angles for shape representation. On one hand, approaches such as
[19,20] minimize the reconstruction error by using iterative
methods. However, they are quite time-consuming because they
solve nonlinear equations for each iteration step.

On the other hand, some studies such as [21,22] have solved the
problem by directly reconstructing the facets propagating from a
fixed facet. However, as may have been predicted, such a propagative
reconstruction cannot reconstruct the surface seamlessly, as the
different propagation paths return conflicting vertex positions. For
this reason, these methods produce highly defective results with
multiple disfigurements and artifacts, as shown in Fig. 8.

To resolve these problems, we propose a novel method of
reconstructing the original vertex coordinates from the given edge
lengths and relative angles in the IICs. Notably, nonlinear terms are
not involved in any iteration step; hence, the algorithm is highly
efficient. In addition, despite the linearity of our formulation, the
results exhibit reasonable accuracy.

First, the global orientation of the local frames is computed. For
this, let us recall the two facets {r,j,i} and {j,1,i} in K that share
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