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a b s t r a c t

In scalar fields, critical points (points with vanishing derivatives) are important indicators of the topology
of iso-contours. When the data values are affected by uncertainty, the locations and types of critical
points vary and can no longer be predicted accurately. In this paper, we derive, from a given uncertain
scalar ensemble, measures for the likelihood of the occurrence of critical points, with respect to both the
positions and types of the critical points. In an ensemble, every instance is a possible occurrence of the
phenomenon represented by the scalar values. We show that, by deriving confidence intervals for the
gradient and the determinant and trace of the Hessian matrix in scalar ensembles, domain points can be
classified according to whether a critical point can occur at a certain location and a specific type of critical
point should be expected there. When the data uncertainty can be described stochastically via Gaussian
distributed random variables, we show that even probabilistic measures for these events can be deduced.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Scalar ensembles consist of several scalar fields, where every
field or instance indicates a possible occurrence of the phenom-
enon represented by the data values. Ensembles are often gener-
ated numerically via multiple simulation runs with slightly
perturbed input parameter settings. The rationale stems from
the observation that the result of every run is affected by a certain
degree of uncertainty, for instance, due to model simplifications or
approximations inherent to the numerical schemes employed.
Generating multiple instances helps predict and quantify the
range of outcomes and, thus, allows us to classify features with
respect to their stability across instances.

An important class of features in scalar fields is based on level-
sets or iso-contours, i.e., the set of all points in the domain where
the scalar field takes on a prescribed value, also called an iso-value.
The effect of uncertainty on level-sets has been treated in several
works [1,2], or [3], which investigate the positional variations of
level-sets due to uncertainty. Such an analysis, however, does not
allow making reliable estimates of the possible geometric or
topological variations of level-sets.

Recently, Pfaffelmoser et al. [4] have looked into the effect of
uncertainty on the variability of gradients in scalar fields. Indica-
tors for the likelihood of geometric changes of level-sets were
derived from confidence intervals of the gradient magnitude and
orientation, resulting in a stability analysis of both the shape and

the slope of level-sets. By using a similar technique to propagate
uncertainty for derived quantities in scalar fields that are linear
combinations of the input values, and by introducing a method for
non-linear combinations, we propose techniques to classify critical
points in scalar ensemble fields with respect to different notions of
stability. Interesting features often relate to critical points, since
these indicate prominent surface components and their topologi-
cal changes. Depending on the position and type of the critical
points, the spatial locations where changes in the surface topology
take place and the nature of these changes can be identified:
surface components emerge or vanish at minima and maxima, join
or split at saddles.

Contribution: We investigate the associated gradient and Hes-
sian matrix fields of the scalar ensemble members to identify the
possible locations of the critical points, and assess their stability in
type throughout the ensemble. We first summarize ensembles
statistically and derive corresponding moments for the gradients.
Since critical points occur where the gradients vanish, we use
confidence intervals of the gradients to obtain quantities indicat-
ing the possibility of a critical point occurring around a given
location. We then derive statistical summaries for the trace and
determinant of the Hessian matrix, to give insight into the
tendency of critical points to behave like minima, maxima, or
saddles near a specified location in the ensemble.

The remainder of the paper is as follows: in the next section we
review related work. We then introduce methods to analyze critical
points in Section 3, which we visualize in Section 4. The proposed
approaches are validated in Section 5 and demonstrated on two
synthetic and two real world data sets in Section 6. We conclude the
paper with a summary of the contributions.
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2. Related work

Uncertainty is a topic relevant to many research domains, and
has been classified among the top research areas in visualization.
Overviews of uncertainty visualization approaches are given, for
instance, by Griethe and Schumann [5], Thomson et al. [6], or
Potter et al. [7].

Uncertainty information has often been summarized by quan-
tities such as mean and standard deviation, which have been
encoded together with the actual data by means of color maps,
opacity, texture, animation, glyphs, etc., by, for example Witten-
brink et al. [8], Djurcilov et al. [9], Rhodes et al. [10], Lundstrom
et al. [11], and Sanyal et al. [12]. Although such methods indicate
the amount of uncertainty affecting the data, they do not allow
drawing conclusions on the way uncertainty affects specific
features of the data, such as level-sets.

Several approaches have been proposed to visualize the effect
of uncertainty on the position and structure of such features: Pang
et al. [13] and Zehner et al. [14] use confidence envelopes contain-
ing an isosurface with a certain confidence, Grigoryan and Rhein-
gans [15] displace each point on a surface along its surface normal
to an extent proportional to the local uncertainty, while Brown
[16] uses surface animation to illustrate the uncertainty of the
values within different areas of the surface. Pfaffelmoser et al. [1]
examine the positional and geometrical variation of level-sets,
whereas Pfaffelmoser and Westermann [17,18] incorporate corre-
lation to offer insight into possible structural variations. Pöthkow
and Hege [2] use the concept of numerical condition – the
sensitivity of the output of a function to perturbations of the input
data – to extract features in uncertain scalar fields, and apply it to
visualize the positional uncertainty of level-sets. The proposed
method was extended to include spatial correlation in Pöthkow
et al. [19].

Further approaches to gain insight into salient features and
their structure are based on topology. Overviews of methods
dealing with topological features for both static and dynamic
scalar fields, and especially for steady and time-dependent vector
fields, are given by Theisel et al. [20], Laramee et al. [21], and
Scheuermann and Tricoche [22]. For ensembles of uncertain scalar
fields, Thompson et al. [23] introduce hixels – per sample
histograms of values – to approximate topological structures of
down-sampled data. Then, Wu and Zhang [3] enhance contour
trees to represent uncertainty in the data values of the scalar fields
and the position of the contours, as well as the variability of the
contour trees themselves.

For uncertain vector fields, Otto et al. [24] generalize the
concepts of stream lines and critical points to uncertain (Gaussian)
vector field topology, in order to segment the topology by
integrating particle density functions. Probabilistic local features,
such as critical points, are extracted from Gaussian distributed
vector fields using Monte Carlo sampling in Petz et al. [25], where
the mathematical model for uncertainty considers the effect of
spatial correlations. The method was extended to several types of
non-parametric models for uncertainty by Pöthkow and Hege [26].
A fuzzy topology is proposed by Bhatia et al. [27], where the
topological decomposition is performed by growing streamwaves,
based on a representation for vector fields called edge maps. In the
context of tractography, Schultz et al. [28] interpret critical points
and other topological concepts based on probabilistic fiber
tracking.

Numerous techniques have been introduced to assess different
types of variations that uncertainty induces on level-sets and other
such data features. To the best of our knowledge, however, no
methods have been proposed to analyze and visualize the possible
variations of critical points that are caused by uncertainty. Inves-
tigating different aspects of the stability of critical points and how

uncertainty affects them would be beneficial, since critical points
are indicative of prominent features and their topological changes,
and such an analysis could serve as a starting point for further
insight into the effects of uncertainty on level-sets and other
related features.

While such studies have not been performed for uncertain data
sets, critical points have been classified before according to
different measures of stability and importance, for various pur-
poses. For scalar fields, Edelsbrunner et al. [29] introduce the
notion of homological persistence to assign importance measures
to critical points and use it for topology simplification. Dey and
Wenger [30] extend this notion to interval persistence, to assess
which critical points are stable under perturbations of the scalar
fields. Reininghaus et al. [31] use the persistence at multiple scales
in scale space, to distinguish between minima and maxima with
hill-, ridge-, or outlier-like spatial extent.

Topological persistence is used in the context of MS complexes,
which decompose manifolds into regions of uniform gradient flow
behavior to investigate the topology of the surfaces. Segmenting
the surface into cells of uniform flow helps identify its various
features and the way they are connected. Critical points, connected
by lines of steepest descent, are the nodes of the MS complex.
Successively eliminating critical points with an importance mea-
sure under a certain threshold results in a hierarchy of MS
complexes, e.g., Bremer et al. [32] or Edelsbrunner et al. [33].
The methods require nonetheless a series of assumptions, as well
as numerical integration. For these reasons and because we are
interested exclusively in stability aspects of the critical points
themselves, we do not compute MS complexes, even though we
also use the gradient vector fields and Hessian matrices in our
analysis.

For vector fields, various measures have been used to classify
the importance of critical points, such as the Euclidean distance
between critical points in Tricoche et al. [34] or the area of their
corresponding flow regions in the topology graph in De Leeuw and
Van Liere [35]. Wang et al. [36] use the topological notion of
robustness to quantify the stability of critical points with respect
to perturbations for stationary and time-varying vector fields.

3. Critical points in ensembles

Critical points of scalar fields are those points where the
gradient vector vanishes. Several methods can be applied to locate
critical points in scalar data sets: finding the crossings of the zero-
contours of the x- and y-components of the gradient vector field,
or the grid points with non-zero Poincaré indices, etc. The
locations of critical points, however, are affected by the uncer-
tainty in the data, which causes variations in the positions and
types of critical points throughout the ensemble. We are therefore
interested to indicate how likely it is that a critical point occurs
around a given location and, if so, whether a certain kind of
behavior should be expected there. In the following, we use two
notions of stability: positional stability refers to locations around
which critical points occur repeatedly in the ensemble members,
while type stability is used to characterize the positions near which
critical points of the same nature emerge consistently throughout
the ensemble.

To this purpose we do not use the actual critical points of the
individual ensemble members. Instead, we derive two types of
indicator functions at every vertex of a Cartesian grid and show
the chances of a critical point of a certain type occurring close to
the vertices, i.e., the stability in position and type. As gradients and
Hessian matrices are fundamental to finding critical points and
their types, we summarize these quantities statistically via con-
fidence intervals and use them to derive the indicators.
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