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Semiregular models are now ubiquitous in computer graphics. These models are constructed by refining
a model with an arbitrary initial connectivity. Due to the regularity enforced by the refinement, the
vertices of semiregular models are mostly regular. To benefit from this regularity, it is desirable to have a
data structure specifically designed for such models. We discuss how to design such a data structure,
which we call the atlas of connectivity maps (ACM) for semiregular models. In an ACM, semiregular
models are divided into regular patches. The connectivity between patches is captured at the coarsest
resolution. In this paper, we discuss how to find these patches in a given semiregular model and how to
set up the ACM. We also show some of the benefits of this data structure in applications such as the
multiresolution framework. ACM can support a variety of different multiresolution frameworks including
compact and smooth reverse subdivision methods. The efficiency of ACM is also compared with a
standard implementation of half-edge.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Semiregular models are very common in computer graphics
[1]. These models are obtained by applying repetitive refinement
on an arbitrary initial mesh or they may be constructed by a
parametrization method (Fig. 1). Applying refinement on a mesh
produces a large number of vertices. However, these vertices are
mostly regular, with irregular vertices corresponding to extra-
ordinary vertices of the initial unrefined model. This regular
structure should be taken into consideration in order to efficiently
capture the connectivity information of the model. Additionally,
the geometry of the vertices (coming from sources such as
subdivision schemes, projections, parametrization) should also
be recorded.

In [2], we introduce ACM: Atlas of Connectivity Maps to
efficiently capture the connectivity between the regular patches
of a semiregular model. These patches, which can be obtained
from an arbitrary refinement, are mapped onto a set of quad-
rilateral 2D domains. The connections between vertices and faces
are captured by these 2D domains (connectivity maps) and their
interconnections. The ACM can be used as an efficient data
structure for semiregular meshes to handle connectivity queries.

In ACM, a coordinate system is assigned to each connectivity
map such that each vertex has integer coordinates. These integer
coordinates are used to index the faces and vertices and handle
neighborhood queries. A hierarchical relationship exists between
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connectivity of vertices and faces at various resolutions. To estab-
lish this hierarchical relationship, we apply rotation, translation,
and/or scaling to transform the coordinate system of one resolu-
tion to another. The vertices' 3D coordinates are stored in 2D
arrays associated with each connectivity map and indexed by the
vertices' connectivity map coordinates.

We also categorize regular refinements for quad meshes, and
for each category, we propose methods to handle adjacency and
hierarchical queries using our data structure. We then describe
how to support triangle meshes and discuss applications such as
subdivision and multiresolution.

In this paper, we extend our previous work [2] in several
different ways. In [2], we describe how to set up an ACM for an
initial coarse mesh with arbitrary connectivity. We then make the
semiregular model by applying regular refinements on the initial
coarse mesh. Here, we present how to set up an ACM for a given
semiregular mesh and associate a connectivity map with each
regular patch of the mesh. We also describe how to handle sharp
features such as creases and corners.

One of the immediate applications of the ACM is the support of
meshes resulting from different subdivision methods. In [2], we
note that ACM is efficient both in terms of space and time at
supporting connectivity queries of subdivision surfaces. A multi-
resolution framework, which allows one to transition between the
high and low resolution versions of a model without losing details,
can be developed by pairing subdivision with its reverse subdivi-
sion scheme. The ACM can also be efficiently used to support
multiresolution frameworks.

In [2], we describe how to support Catmull-Clark, Loop, and v/3
reverse subdivision. Here, we extend it to support +/2 reverse


www.sciencedirect.com/science/journal/00978493
www.elsevier.com/locate/cag
http://dx.doi.org/10.1016/j.cag.2013.09.003
http://dx.doi.org/10.1016/j.cag.2013.09.003
http://dx.doi.org/10.1016/j.cag.2013.09.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2013.09.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2013.09.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2013.09.003&domain=pdf
mailto:amahdavi@ucalgary.ca
http://dx.doi.org/10.1016/j.cag.2013.09.003

2 A. Mahdavi-Amiri, E Samavati / Computers & Graphics 39 (2014) 1-11

[
.
Vi

‘n

—
—

<«

—

/.

Fig. 1. A semiregular mesh with mostly regular vertices.

subdivision. In addition, supporting the recently developed
“smooth reverse subdivision” multiresolution framework is also
presented. We also provide the filters for /2 reverse and /3
reverse and smooth reverse subdivision.

We have compared the time and space efficiency of our data
structure with alternatives in [2]. The half-edge data structure
used for our comparison in [2] was implemented by ourselves and
was not based on a standard implementation. Here, we report the
speed of the half-edge data structure implemented in CGAL to
make a comparison with a standard implementation of the half-
edge data structure [3].

We organize the paper as follows: in Section 2 some related
work is presented. We provide an overview and a detailed
description of the ACM in Section 3. A method is provided in
Section 4 to adapt the ACM to a given high resolution semiregular
model. A representation for sharp features in the ACM is described
in Section 5. In Section 6, an efficient technique for multiresolution
representations for Catmull-Clark, Loop, +~/2, and +/3 is proposed.
We also describe how to handle smooth reverse subdivision using
the ACM. We compare our work with CGAL as an efficient
implementation of half-edge in Section 7. Future work and
limitations are presented in Section 8 and we conclude in
Section 9. We also provide the filters of +/2 and +/3 compact
reverse subdivision in Appendix A and Appendix B respectively
and the filters of smooth reverse /2 and +/3 subdivision in
Appendix C.

2. Related work

Data structures for semiregular models can be found primarily
in the literature related to subdivision and multiresolution. We
present work related to our proposed method, divided into two
categories: subdivision and multiresolution.

Subdivision. Subdivision is a well-studied subject in computer
graphics. There are many subdivision schemes, such as Loop,
Catmull-Clark, Doo-Sabin, +/2 and +/3 subdivision [4-8]. Subdivi-
sion is typically a two-step process: one step of refinement
followed by an averaging step. The relationship between lattices
at different resolutions resulting from different types of refine-
ment has been previously classified in [9,10]. Our categorization of
refinements is similar to their work. However, we have classified
subdivision to assist in designing an efficient data structure to
address connectivity queries on an arbitrary connectivity model.

The half-edge data structure and its variations are commonly
used to model subdivision surfaces [11]. These data structures are
designed for general topological objects' adjacency queries. How-
ever, the half-edge data structure cannot be directly used for
hierarchical access. Furthermore, it does not benefit from the
regularity of subdivision and, therefore, for objects with a large
number of vertices it becomes inefficient.

An alternative data structure that supports hierarchical opera-
tions is the quadtree [12]. Quadtrees are commonly used for
hierarchical meshes, particularly for hierarchical editing applica-
tions [13]. Although quadtrees are quite effective at supporting
hierarchy between resolutions, they need to store many pointers
to maintain their nodes' conductivities and hierarchical depen-
dencies. To overcome this inefficiency, indexing methods exist
which assign a unique index to every node and discard the tree
structure [12]. However, these indexing methods are primarily
designed to support hierarchy and ignore adjacency relationships.
Moreover, since quadtrees are designed to support 1-to-4 refine-
ment, they cannot be directly used to support other refinements.

Patch-based refinement methods rely on data structures that
are specifically designed for subdivision methods [14-18]. Here,
meshes are divided into patches and subdivision is separately
applied to each patch. Each patch is stored in an array and the
connectivity between the patches' boundaries is handled using
repetitive points at the boundary edges or a first resolution edge
based data structure. These methods are mostly designed for a
specific type of refinement or primitive shapes [15,18]. Some of
these data structures use spiral 1D indexing for vertices [16,17].
Spiral indexing complicates neighborhood access, especially for
non-immediate neighbors that are essential for applications like
multiresolution. We instead use simple 2D domains to maintain
connectivity information and extend patch-based methods to
support all types of refinement.

Multiresolution. While subdivision generates high resolution
objects, multiresolution provides a means to transition from high
to low resolution and vice versa [19]. Some multiresolution
frameworks, though not all, maintain the semiregularity of objects.
This can be achieved by reversing the process of subdivision (i.e.
via a reverse subdivision process) [20-22] or by considering a
property of the coarse vertices, such as smoothness (computed via
the Laplacian) [13]. Since both the Laplacian and reverse subdivi-
sion use local operators to coarsely sample the fine model, our
proposed method can handle these operations.

Olsen et al. [20,21] provide a compact multiresolution frame-
work using the concept of even/odd vertices. At different resolu-
tions, the even/odd labeling distinguishes multiresolution details
from coarse vertices. They use an edge based data structure to
handle connectivity queries and a hashing method to map vertices
to details or coarse vertices [23]. To show that our ACM can
efficiently support multiresolution frameworks, we describe how
to support the compact multiresolution proposed in [20,21] and
compare the speed of our data structure with [23].

To adapt the half-edge structure to multiresolution frame-
works, Kraemer et al. [24] modify this data structure by defining
sequences of half-edges. Using this multiresolution half-edge struc-
ture, it is possible to support primal and dual schemes. However,
this data structure requires a large amount of memory for high
resolution models due to the storing of all edges and an extensive
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