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Morse and Morse-Smale complexes have been recognized as a suitable model for representing
topological information extracted from discrete scalar fields. Here, we propose a dimension-indepen-
dent multi-resolution model for Morse complexes built on a graph representation of the complexes,
that we call a Multi-Resolution Morse Incidence Graph (MMIG). We define data structures for encoding
the MMIG and we discuss how to extract from an MMIG topological representations of the scalar field
over its domain M at both uniform and variable resolutions. We present experimental results
evaluating the storage cost of the data structures encoding the MMIG, and timings for building and
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1. Introduction

Morse theory offers a natural and intuitive way of analyzing
the structure of a scalar field as well as of compactly representing
it through a decomposition of its domain M into meaningful
regions associated with the critical points of the field. These
complexes are widely used in shape analysis and modeling, and
they have been applied in scientific visualization for understand-
ing and analyzing the critical features of a scalar field.

Simplification of Morse and Morse-Smale complexes has been
an important research topic in these last years [1-3]. We have
defined atomic simplification (and the inverse refinement) opera-
tors [3], which have the important property of forming a mini-
mally complete basis for modifying Morse and Morse-Smale
complexes in arbitrary dimension. Here, we define and imple-
ment such operators on a graph-based dual representation of
Morse complexes called a Morse incidence graph (MIG) [4].

A multi-resolution representation of the topology of a scalar
field fis crucial for interactive analysis and exploration of terrains,
static and time-varying volume data sets, in order to maintain and
analyze their features at different levels of detail and reduce the
size of their representation. Here, we propose a dimension-
independent graph-based model for multi-resolution representa-
tion of Morse and Morse-Smale complexes, which describes the
topology of scalar fields in arbitrary dimensions, that we call a
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Multi-Resolution Morse Incidence Graph (MMIG), and we describe
the data structures we have designed and implemented for
encoding it.

An MMIG organizes several graph representations of domain M
and scalar field f at different resolutions, and is capable of
supporting the extraction of the graph which best approximates
the topology of the field under given requirements depending on
the specific application. It is possible to select from an MMIG a
variety of graphs in which the resolution (defined by a suitable
error criterion) is uniform or varies over the domain M of the
scalar field. The multi-resolution model, its implementation
described here, and the algorithms for querying it at uniform
and variable resolutions will greatly enhance the analysis and
understanding of static and dynamic volume data sets, which can
be modeled as 3D and 4D scalar fields.

2. Background and related work

A (2 real-valued function f over a closed compact n-dimensional
manifold M is a Morse function if all its critical points are non-
degenerate [1,5]. Integral lines that converge to a critical point p of
index i form an i-cell called a descending cell of p. Dually, integral lines
that originate at p form its ascending (n—i)-cell. The descending and
ascending cells decompose M into descending and ascending Morse
complexes, denoted as I'; and I, respectively (see Fig. 1(a) and (b) for
a 2D example). A Morse function f is called a Morse-Smale function
if and only if each non-empty intersection of a descending and
an ascending cell is transversal. The connected components of the
intersection define a Morse-Smale complex, which decomposes M into
cells defined by integral lines with the same origin and destination.
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Fig. 1. The descending (a) and ascending (b) 2D Morse complex for function f(x,y)=cosx-cosy, (c) the corresponding MIG and (d) MIG after application of

remove; »(q,p,p’)-

Algorithms for decomposing the domain M of f into an
approximation of a Morse or of a Morse-Smale complex in 2D
can be classified as boundary-based or region-based. In [6-8],
algorithms for extracting the Morse-Smale complex from a
tetrahedral mesh have been proposed. Discrete methods rooted
in the discrete Morse theory proposed by Forman [9] are compu-
tationally more efficient [10,11]. For a survey, see [12,13].

Simplification of Morse and Morse-Smale complexes can be
achieved by applying an operator called cancellation [1]. This
operator has been investigated in 2D [14-17] and 3D [2] Morse-
Smale complexes. In any dimension higher than two, a cancella-
tion decreases by two the number of critical points (0-cells) in the
Morse-Smale complex, but it may increase the number of higher-
dimensional cells. Thus, a cancellation cannot be considered as a
simplification operator, since it increases the size of the repre-
sentation [18]. Several strategies have been proposed to postpone
a cancellation that would introduce a number of arcs greater than
a predefined threshold [18]. Atomic simplification operators have
been defined in [3], which always reduce the number of cells in
the Morse-Smale complex. These operators will be briefly
reviewed in Section 3. Not much work has been done on
modifying the scalar field f after a cancellation, thus coupling
the topological simplification with the smoothing of f, and both
are for 2D scalar fields [14,19].

3. Representation and simplification of Morse complexes

We briefly describe here two tools that we use in this work,
namely a dimension-independent incidence-based graph repre-
sentation for Morse complexes, that we call the Morse Incidence
Graph (MIG) [4], and simplification and refinement operators on
Morse complexes [3].

The Morse Incidence Graph (MIG) encodes the topology of both
the ascending and descending Morse complexes I'; and Iy, respec-
tively (see Fig. 1(c) for a 2D example). An MIG is a multigraph
G=(N,A) such that (i) there is a one-to-one correspondence between
the nodes in N and the i-cells of I'; (and thus the (n—i)-cells of I'y),
called i-nodes and (ii) there are k arcs joining an i-node p with an
(i+1)-node q if and only if i-cell p appears k times on the boundary
of (i+1)-cell q in I'y.

We use a dimension-independent data structure for represent-
ing the MIG, called the incidence-based data structure [4], by
coupling the topology of the Morse complexes with the geometry
of the underlying mesh X. The geometry is encoded only for the
descending cells of the maxima and for the ascending cells of the
minima. Such cells are encoded as a set of indexes of n-simplexes
in the data structure representing X. These are the n-simplexes
forming the descending cell of each maximum p in Iy and those
forming the ascending cell of each minimum q in I',. In [20], a
dimension-specific data structure for 3D Morse-Smale complexes
is proposed, in which the topological part is equivalent to the MIG.
Such data structure stores the geometry of all cells in the Morse
complexes and, thus, it requires more space than the 3D instance
of the incidence-based representation.

The second tool that we use are the simplification and
refinement operators on Morse complexes [3]. The remove sim-
plification operator collapses two saddle points of consecutive
index that are connected through a unique integral line. It has
two instances, namely remove;;, ; and remove;;_1,for 1 <i<n-1.
There are two types of remove;;, 1, denoted as remove;;, 1(q,p.p’)
and remove;; . 1(q,p,9), respectively.

Operator remove;;. 1(q,p,p’) applies when i-saddle q is con-
nected to (i+1)-saddle p and exactly one other (i+1)-saddle p’
different from p. It collapses i-saddle q and (i+1)-saddle p into
(i+1)-saddle p'. In the descending complex I'y, it collapses i-cell q
and (i+1)-cell p into a unique (i+1)-cell p’ incident in i-cell g and
different from (i+1)-cell p.

Operator remove;;, 1(q,p,9) deals with the situation in which
i-saddle g is connected to only one (i+1)-saddle p. It eliminates
i-saddle q and (i+1)-saddle p from the set of critical points of
scalar field f, i.e., it eliminates i-cell g and (i+1)-cell p from I'y.
The remove;;_1(q,p,p’) operator is completely dual. For brevity, we
will consider only operators of the first type.

The refinement insert operator, inverse to remove operator, is
defined as an undo of a remove. It has two instances, namely
insert;; 1 and insert;;_ inverse to remove;;,; and remove;; 1,
respectively.

It has been shown in [3] that the remove and insert operators
form a minimally complete basis for the set of topologically
consistent operators for updating Morse complexes on a manifold
M in any dimension. In particular, the general cancellation
operator defined in Morse theory [1], which cancels two critical
points of consecutive index connected through a unique integral
line, can be expressed as a suitable combination of remove and
insert operators.

4. The multi-resolution Morse incidence graph (MMIG)

In this section, we define a multi-resolution model for the
topology of Morse and Morse-Smale complexes, that we call a
Multi-Resolution Morse Incidence Graph (MMIG). An MMIG is
generated from the MIG representing the two ascending and
descending Morse complexes at full resolution by iteratively
applying remove operators in increasing order of persistence.
Intuitively, persistence measures the importance of the pair of
critical points p and g to be eliminated, and is equal to the
absolute difference in function values between them.

A remove operator transforms an MIG G=(N,A) into a simpli-
fied MIG G' = (N',A") by eliminating the two nodes corresponding
to the two critical points eliminated from N, and by suitably
reconnecting the remaining nodes in G. A remove;;, 1(q,p,p’) is
feasible on G if there exists a unique arc (p,q) in A, and there exists
a unique (i+1)-node p’e N different from (i+1)-node p and
connected to i-node ¢q. In order to define the effect of
remove;;, 1, we consider three sets of nodes in G, namely the set
Z={zyp,h=1,... ,hma} of the (i—1)-nodes connected to i-node g;
the set S={s,k=1,...,knax} of the (i+2)-nodes connected to
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