
Technical Section

A survey of raster-based transparency techniques$

Marilena Maulea, Jo~ao L.D. Combaa,n, Rafael P. Torchelsenb, Rui Bastosc

a UFRGS, Brazil
b UFFS, Brazil
c NVIDIA Corporation, USA

a r t i c l e i n f o

Article history:

Received 31 December 2010

Received in revised form

1 July 2011

Accepted 25 July 2011
Available online 3 August 2011

Keywords:

Transparency

Fragment sorting

Order-independent transparency

a b s t r a c t

Transparency is an important effect for several graphics applications. Correct transparency rendering

requires fragment-sorting, which can be more expensive than sorting geometry primitives, and can

handle situations that might not be solved in geometry space, such as object interpenetrations. In this

paper we survey different transparency techniques and analyze them in terms of processing time,

memory consumption, and accuracy. Ideally, the perfect method computes correct transparency in real-

time with low memory usage. However, achieving these goals simultaneously is still a challenging task.

We describe features and trade-offs adopted by each technique, pointing out pros and cons that can be

used to help with the decision of which method to use in a given situation.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Transparency is the physical property of materials that allows
light to pass through objects. This property is important to
estimate the appearance of real objects, and it is largely used to
denote the relationship among structures in visual interaction.
The focus of this survey is to summarize and describe specific
techniques for rendering transparent objects using raster-based
pipelines.

In raster-based pipelines, the computation of transparency is
simplified based on the assumption that there is no refraction
when light passes from one medium to another. In this formula-
tion, computing the correct transparency requires properly blend-
ing fragment colors, considering their surface opacities and their
distances to the viewpoint, as described by Porter and Duff [1].
For transparency to be correctly computed, fragments must be
composed in the same order of their distance to the camera,
either in front-to-back (FTB) or back-to-front (BTF)1 ordering.

Fragments combined in unsorted depth order might not have
their contributions properly evaluated. For example, consider the
computation of a pixel color involving three fragments. Assume
that in correct depth order the closest and farthest fragments are
transparent, while the middle fragment is opaque. If the opaque
fragment is combined last (after the transparent ones), the
incorrect contribution of the farthest fragment cannot be dis-
carded anymore.

Fig. 1(a) illustrates the expected result after rasterization of
three triangles facing the camera. In this example, the green
triangle is the closest to the camera, while the red one is the
farthest. The BTF blending equation expects triangles in the
following order: red, blue, and green (as in Painter’s algorithm
[2]). This way, the green contribution is correctly identified as the
nearest to the camera. Fig. 1(b) illustrates color blending in
incorrect depth order. Note that the green triangle is not drawn
in front of the others, due to the out-of-order blending.
Tables 1 and 2 give numerical examples for both situations.

As we can conclude that sorting is the main topic of the papers
we survey, and we use it as the criteria to classify methods into
the following categories:

� Geometry-sorting: sort geometry (meshes or primitives) before
rasterization;
� Fragment-sorting: sort rasterization fragments before blending,

using buffer-based or depth peeling;
� Hybrid-sorting: combine geometry-sorting with fragment-

sorting;
� Depth-sorting-independent: blend fragments without consider-

ing their depth order;
� Probabilistic: estimate visibility without sorting.

We organize our presentation using the above classification in
the sections that follow. To clarify the discussion, parameters
used by the methods are given in Table 3.

2. Geometry-sorting methods

The geometry-sorting methods render transparent objects
(usually composed of triangle meshes) by either sorting the objects

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/cag

Computers & Graphics

0097-8493/$ - see front matter & 2011 Elsevier Ltd. All rights reserved.

doi:10.1016/j.cag.2011.07.006

$This article was recommended for publication by E. Reinhard.
n Corresponding author. Tel.: þ55 51 3308 6930; fax: þ55 51 3308 7308.

E-mail addresses: joao.comba@gmail.com (J.L.D. Comba),

rafael.torchelsen@gmail.com (R.P. Torchelsen), rbastos@nvidia.com (R. Bastos).
1 Back-to-front blending equation [1]: C0dst ¼ ð1�aÞCdstþaCfrag .

Computers & Graphics 35 (2011) 1023–1034

www.elsevier.com/locate/cag
www.elsevier.com/locate/cag
dx.doi.org/10.1016/j.cag.2011.07.006
mailto:joao.comba@gmail.com
mailto:rafael.torchelsen@gmail.com
mailto:rbastos@nvidia.com
dx.doi.org/10.1093/comjnl/bxh159

or at a finer granularity, by sorting their primitives (i.e. triangles).
Both approaches are simple to implement and can directly leverage
the alpha-blending support on GPUs (graphics processing units).
These methods sort objects or primitives before rasterization and
are arguably the most widely used transparency technique
in games.

Two situations can lead to image artifacts when using geo-
metry-sorting methods: interpenetrating geometry and out-of-
order arrivals. Interpenetrating geometry makes it difficult to
properly sort objects and primitives, which leads to blending
artifacts. Out-of-order arrival can arise when the technique sorts
entire meshes instead of triangles, which can also lead to blending
artifacts. Both situations can be properly handled by sorting at the
fragment level.

2.1. Object sorting

This approach sorts objects as single entities, usually by the
centroid of their meshes. It is prone to artifacts due to the out-of-
order arrival of fragments, since object ordering is approximate
and does not guarantee correct ordering at the primitive level.

Object sorting methods first sort all the m objects in
O(m log m), followed by rasterization of object primitives using
O(nþWH) operations, and blending using O(WHd) operations.
The scene is rendered in one geometry pass, with no need for
extra memory, apart from the color and depth buffers, which
require O(WHp) bytes.

2.2. Primitive sorting

Sorting geometry at the primitive level is the finest granularity
that can be obtained in object space. It allows solving the out-of-
order problem when no interpenetration occurs. One way to solve
interpenetration cases is to split primitives, which might have a high
computational cost and still generate z-fighting problems. Another
option is to solve interpenetration analytically at even higher costs.

Primitive sorting requires sorting n primitives (triangles) in
O(n log n) operations. The remaining steps and analysis are
analogous to the object-sorting given above.

3. Fragment-sorting methods

Fragment-sorting methods compute transparency by z-sorting
at fragment level before blending. Fig. 2 shows an example of out-
of-order rendering of triangles, where fragments are sorted before
blending. We further subdivide the fragment-sorting methods
into two categories:

� Buffer-based methods store and sort the fragments before
blending;
� Depth peeling methods extract depth order implicitly through a

multi-pass rendering approach.

The main advantage of fragment-sorting methods is the
quality of the image, often superior to all other methods. On the
other hand, the computational cost and/or memory footprint, due
to sorting, is considerably higher.

3.1. Buffer-based methods

Buffer-based methods use a buffer to store fragments while they
are generated. After rasterization, a sorting step computes the
correct blending ordering. The advantage of these methods is image
quality, when compared to sorting-based methods like geometry-
sorting, and performance, when compared to depth peeling methods,

Fig. 1. Blending evaluation for green, blue, and red triangles (in viewing order). On

the left, we illustrate the blending of fragments generated during the rasterization of

each triangle. The arrow length represents the fragment depth. On the right, we show

the resulting image after blending. Primitives processed in-depth order (a) produce

different results compared to objects processed in out-of-depth order (b), whereas

blending in-depth order produces the expected result. (a) Depth ordering: correct

blending and (b) Out-of-order: incorrect blending. (For interpretation of the refer-

ences to color in this figure legend, the reader is referred to the web version of this

article.)

Table 1
Numerical example of a pixel evaluated with the BTF order. Each line represents a

fragment blending order (top to bottom).

Fragment RGBa Depth BTFblended result

Background (1, 1, 1, 1) 1 (1, 1, 1, 1)

1 (1, 0, 0, 0.4) 3 (1, 0.6, 0.6, 0.76)

2 (0, 0, 1, 0.4) 2 (0.6, 0.36, 0.76, 0.616)

3 (0, 1, 0, 0.4) 1 (0.36, 0.616, 0.456, 0.53)

Table 2
Numerical example of a pixel evaluated out-of-depth order with the BTF blending

equation [1]. Each line represents a fragment and the blending order (top to

bottom).

Fragment RGBa Depth BTFblended result

Background (1, 1, 1, 1) 1 (1, 1, 1, 1)

1 (0, 0, 1, 0.4) 2 (0.6, 0.6, 1, 0.76)

2 (0, 1, 0, 0.4) 1 (0.36, 0.76, 0.6, 0.616)

3 (1, 0, 0, 0.4) 3 (0.616, 0.456, 0.36, 0.53)

Table 3
Parameters used by different methods.

W Screen width

H Screen height

S Number of samples for super sampling

m Number of objects

n Number of geometry primitives (nbm)

p Pixel size: 12B (8B: RGB 8b per channel, 8b alpha, 4B depth value)

l Number of transparent layers

d Average number of transparent layers (do l)

k Buffer entries per pixel (in fragments)

f Min(k, d)

s Samples per pixel

M. Maule et al. / Computers & Graphics 35 (2011) 1023–10341024

Download English Version:

https://daneshyari.com/en/article/442654

Download Persian Version:

https://daneshyari.com/article/442654

Daneshyari.com

https://daneshyari.com/en/article/442654
https://daneshyari.com/article/442654
https://daneshyari.com

