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a b s t r a c t

Quadratic curve and surface fitting to a set of data points are fundamental problems in reverse

engineering and many other application areas. We develop the fitting methods for quadratic curves and

surfaces based on the squared distance minimization technology. The basic idea of squared distance

minimization for curve and surface fitting is first presented. Then we devise the corresponding squared

distance term for each quadratic curve and surface, and minimize it to obtain its parameters. We repeat

the squared distance minimization and update the parameters of the quadratic curve and surface by

iterations until convergency. Consequently, the final fitting result is achieved. Experimental results

demonstrate the effectiveness of the fitting method.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Quadratic curves and surfaces are used widely for many
applications, including CAD and geometric modeling, metrology,
computer graphics, computer vision, pattern recognition, and
so forth. Particularly, in reverse engineering, there is a general
demand to reconstruct the 3D model of the geometric shape from
the scanning data points, i.e. to construct a boundary representa-
tion solid model of the object’s shape. Quadratic curves and
surfaces are frequently existing in the composition of mechanical
products. Therefore, the considerable attention has been attracted
to the approximation of a set of data points by quadratic curves
and surfaces [1–8]. Basically, curve and surface fitting can be
translated into solving an optimization problem, i.e., minimizing
the objective function of a fitting error term. Therefore, how to
define the fitting error term is key to curve and surface fitting.
A number of researchers have been working on this topic in two
decades, and hence many definitions regarding the fitting error
term are proposed. Basically, those definitions mainly consist of
four types: (1) algebraic distance error term (AD) [9], (2) Euclidean
distance error term (ED) [10,11], (3) tangent distance error term
(TD) [12] and (4) squared distance error term (SD) [13–15].

Here we introduce those four typical error terms briefly. Let
P¼ fp1,p2, . . . ,pmg be scanning data points from a target shape, it
can be approximated by SðxÞ, where x is the state vector of the
closest point of pAP on S. Suppose the corresponding implicit

expression of S is FðpÞ ¼ 0, then we have the algebraic distance
error ErrorAD, the Euclidean distance error ErrorED, the tangent
distance error ErrorTD and the square distance error as follows:

ErrorAD ¼
Xm

i ¼ 1
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Xm
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where Ni is the unit normal vector of SðxiÞ in Eq. (3); Ni,j is the unit
vector of the y-axis in the local Cartesian frame of SðxiÞ on S and
ai,j is the non-negative coefficient in Eq. (4), which will be
explained in detail in the next section.

The algebraic distance is incapable of measuring the accurate
distance between a fitting object and the target shape, which is
generally used for initial object fitting. The ED-based fitting
method is widely used in computer graphics and CAGD applica-
tions thanks to its simplicity and straightforwardness. However,
the convergence of the ED-based method is slow relatively and it
is often trapped in a poor local minimum. The TD-based fitting
method is quite popular in the computer vision community. It
converges faster than the ED-based fitting method. Nevertheless,
it is not stable near a high-curvature part of a target shape.
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By contrast, the SD error term faithfully measures the geometric
distance between a fitting object and a target shape, thus leading
to faster and more stable convergence than the ED error term, and
the TD error term [14].

Accordingly, we develop the fitting methods for the most
common curves and surfaces in mechanical products, i.e. quad-
ratic curves and surfaces, using the SD error term. Specifically, the
fundamentals of squared distance minimization are presented
firstly. Then, the squared distance error terms are designed for the
quadratic curves, including circle, ellipse, parabola and hyperbola,
as well as the quadratic surfaces, such as cylinder, sphere and
cone, respectively. Furthermore, based on those error terms, the
method using the squared distance minimization strategy is given
in details to extract the corresponding parameters of each quad-
ratic primitive.

2. Fundamentals of squared distance minimization

We first introduce the squared distance of 2D curve briefly. For
more details and discussions, we refer to [13–15]. Given a point
set P¼ fp1,p2, . . . ,pmg � R2 in a plane P, the fitting curve is
represented with c(t) in Fig. 1. Let cðt0Þ be the closest point of a
point pAP on c(t), d the shortest distance, and the curvature,
curvature radius and curvature center of cðt0Þ on c(t) are k,
r¼ 1=9k9, and eðt0Þ, respectively. According to the curve Theory
[16], the Frenet frame of a point with the parameter of t on c(t)
can be represented by the tangent vector aðtÞ and the normal
vector bðtÞ of c(t). Consequently, a local Cartesian coordinate
system xoy on cðt0Þ in P could be constructed, where the origin,
x-, y-axis are cðt0Þ, aðt0Þ, bðt0Þ, respectively. Under xoy, the local
coordinates of p and eðt0Þ are ð0,dÞ and ð0,�rÞ.

Let q¼ ðx,yÞ be in a small neighborhood of p, the squared
distance D2 from q to c(t) can be approximately expressed with

D2
ðx,yÞ ¼ ðJq�eðt0ÞJ�rÞ2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þðy�rÞ2

q
�r

� �2

ð5Þ

The second-order Taylor approximant f of the function D2

at q is

f ðx,yÞ ¼
d

d�r
x2þy2 ð6Þ

By transforming it into the global coordinate system, it
becomes

Fðx,yÞ ¼
d

d�r
½aðt0Þ � ðq�cðt0ÞÞ�

2þ½bðt0Þ � ðq�cðt0ÞÞ�
2 ð7Þ

which, strictly speaking, is the second order approximation of the
squared distance function of 2D curve. Since it is derived from a
direct attempt to accurately approximate the squared distance
function, we refer to it as the squared distance function for
simplicity. Note that Fðx,yÞ may have a negative value if 0odor,
which may lead to the failure of the following optimization

iterations. In this case, we remove all negative items in the squared
distance function as [14].

Then, we discuss the 3D surface case. Let S be the fitting
surface of a point set P¼ fp1,p2, . . . ,pmg � R3, s is the closest point
of a point pAP on S and d is the shortest distance. The principal
curvatures of s on S are k1, k2, and the corresponding curvature
radii are r1 ¼ 1=9k19 and r2 ¼ 1=9k29, see Fig. 2. According to the
surface Theory [16], the Frenet frame of s on S consists of the two
vectors n1, n2 of the principal curvature directions, and the normal
vector n3. Applying the squared distance function of 2D curve
here, the squared distance function of 3D surface can be
expressed

FðpÞ ¼
d

d�r1

½n1 � ðp�sÞ�2þ
d

d�r2

½n2 � ðp�sÞ�2þ½n3 � ðp�sÞ�2 ð8Þ

Therefore, the squared distance function of each point piAP

to S is

FðpiÞ ¼
di

di�ri,1

½ni,1 � ðpi�siÞ�
2þ
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di�ri,2
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2

¼
X3

j ¼ 1
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where ai,1 ¼ di=ðdi�ri,1Þ, ai,2 ¼ di=ðdi�ri,2Þ and ai,3 ¼ 1.
Let P be the parameter vector of surface S, Sþ denotes the

fitting surface with the updated parameter vector Pþ ¼PþD,
where D is incremental updates to S. The closest point of pi on Sþ

is sþi , which is different from the shortest distance si of pi to S.
However, because the difference is quite small, we can substitute
sþi with si approximately. Suppose that xi is the state vector of si,
Eq. (8) can be transformed to

EðPþ Þ ¼
X3

j ¼ 1

ðai,j � ½ni,j � ðpi�Sþ ðxiÞÞ�
2Þ ð10Þ

For all points of P, the squared distance function is

FðPþ Þ ¼
Xm
i ¼ 1

EðPþ Þ ¼
Xm

i ¼ 1

X3

j ¼ 1

ðai,j � ½ni,j � ðpi�Sþ ðxiÞÞ�
2Þ ð11Þ

By minimizing this squared distance function, i.e.

min FðPþ Þ ¼min
Xm

i ¼ 1

X3

j ¼ 1

ðai,j � ½ni,j � ðpi�Sþ ðxiÞÞ�
2Þ ð12Þ

the updated parameter vector Pþ of Sþ is obtained.

3. Quadratic curve and surface fitting

Based on this squared distance minimization method, we
propose the fitting methods of quadratic curves and surfaces,Fig. 1. Frenet frame of 2D curve.

Fig. 2. Frenet frame of 3D surface.
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