
Chaos and Graphics

Realistic rendering 3D IFS fractals in real-time with graphics accelerators

Tomasz Martyn �

Institute of Computer Science, Warsaw University of Technology, ul Nowowiejska 15/19, 00-665 Warsaw, Poland

a r t i c l e i n f o

Article history:

Received 16 June 2009

Received in revised form

3 August 2009

Accepted 3 August 2009

Keywords:

Fractal

Iterated function system

Real-time rendering

Geometry instancing

Game engine

a b s t r a c t

In this paper we present a novel approach to realistic real-time rendering scenes consisting of many

affine IFS fractals. In order to illuminate the fractals, we propose a new method for estimating normals

at fractal surface points. The method is based on approximations of the convex hulls for fractal subsets.

The geometry of a fractal is represented as a collection of circular splats. We also show how to take

advantage of self-similarity and hardware geometry instancing so as to store fractal models with

extremely small memory requirements. As a result, the geometry data related to hundreds of fractals

can be kept entirely in the video RAM of a graphics adapter and rendered in real-time using even

medium-power graphics accelerators.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The classic books The fractal geometry of nature [1] by
Mandelbrot and Fractals everywhere [2] by Barnsley as well as a
great deal of later work show that the mathematical language of
fractal geometry is well-suited for describing natural phenomena.
The main reason for this is that fractals, like many creations
encountered in nature, are usually irregular, intricate shapes
which are organized according to some rules of self-similarity.
Moreover, the mathematical beauty of fractals arises from the fact
that despite their geometrical complexity, fractals are usually
defined using relatively simple, compact mathematical expres-
sions. This seeming paradox that links the complexity of nature
with simple mathematical descriptions is just what makes fractal
geometry to be regarded as the ‘‘geometry of nature’’.

However, despite the huge potential to describe and, thus,
mimic shapes found in nature, fractals are often not utilized as
models of real-time graphics applications, e.g. computer games. In
the present games fractal algorithms are used only to generate
textures [3] and the geometry that can be easily represented by
meshes of triangles. The main reason for this is that the
architecture of today’s graphics adapters is mostly dedicated to
processing batches of triangles. A well-known example of fractal
objects used in games are terrains, which can be natively
represented in the form of a grid of vertices perturbed by a fractal
noise [4]. As another example one could point out branched
structures of trees represented as unions of cylinder meshes

generated algorithmically using L-systems (if we accept that the
product of L-systems can be considered as being within the broad
meaning of the term ‘‘fractal’’). Nevertheless, due to the relative
large number of polygons involved in a cylinder mesh, the
branching patterns utilized nowadays in computer games are
characterized by a low level of branching—probably too low so as
to regard the patterns as intricate fractal shape. Anyway, foliage (if
present) of trees is represented ‘‘non-geometrically’’ by means of
(usually) a group of textures with an alpha channel, as is also the
case for herbaceous plants and grass. Undoubtedly such ap-
proaches may give good results when perceived at appropriate
distances and preferred viewpoints. However in applications with
a free-moving FPP or TPP camera1 it usually quickly becomes
apparent that the visually attractive plants are only an illusion
based on textures.

One of the main obstacles for real-time rendering of fractal
objects is that fractals, in general, have normal vectors undefined
at their points (some exceptions can be found, e.g. in [5]). The
normals, however, are necessary to do shading and lighting.2

Therefore, realistic rendering of fractals is not trivial.
Second, fractals are point sets and to render them at accuracy

that goes with the nowadays screen resolutions usually hundreds
of thousands of points per fractal are needed. In terms of memory
requirements this can be read as about 30 MB per fractal, and the
application of an adaptive level of detail (LOD)—an essential

ARTICLE IN PRESS

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cag

Computers & Graphics

0097-8493/$ - see front matter & 2009 Elsevier Ltd. All rights reserved.

doi:10.1016/j.cag.2009.10.001

� Tel.: +48 22 660 75 41.

E-mail address: martyn@ii.pw.edu.pl

1 That is, a First-Person Perspective and, respectively, Third-Person Perspective

camera.
2 Ignoring some lighting models applied in volume visualization and so-called

non-realistic computer graphics, where normals are not used to compute the color

at a point of a surface.

Computers & Graphics 34 (2010) 167–175

www.elsevier.com/locate/cag
dx.doi.org/10.1016/j.cag.2009.10.001
mailto:martyn@ii.pw.edu.pl


ARTICLE IN PRESS

element of every game engine—additionally multiplies this
number. Since at the time of this writing graphics adapters have
at most 1024 MB of VRAM (and transferring data between CPU
and GPU is relatively slow) taking advantage of fractals as models
for computer game purposes is a challenge.3

There have been several approaches to realistic rendering of 3D
fractals proposed. Moreover, taking into account the today’s
graphics accelerators, some of the approaches may be regarded
as real-time visualization methods even if they were not
recognized as such originally.

An early paper by Norton [6] presents an approach to
rendering 3D projections of quaternion Julia sets. Using the
boundary tracing algorithm, the Julia set boundary points were
determined and visualized with Z-buffer algorithm. In order to
apply lighting, the normal vector at a rendered point was
determined based neighboring Z-buffer values. (The same method
for visualizing quaternion Julia sets can be also noticed in [7].) The
method can be implemented in real-time on a modern GPU.

A method for interactive rendering quaternion Julia sets was
presented by Hart et al. [8]. To generate Julia set points they used
an extension of the inverse iteration algorithm. Then, the points
were passed to Z-buffer to determine visibility. The normals were
estimated using Z-buffer values like in [6].

A paper [10] by Hart et al. shows how to visualize quaternion
Julia sets with ray tracing. To determine the ray-fractal intersec-
tion a point-to-fractal distance estimator and unbounding
volumes were used. The normal at the point of a fractal surface
was estimated as the gradient of a scalar field generated by the
distance estimate function.

In a paper by Hepting et al. [11] they present a method for ray-
tracing affine IFS fractals. The approach approximates an IFS
fractals with tiny spheres using the adaptive-cut algorithm. In
order to light a fractal surface, the normals at the points of ray-
sphere intersections were used.

Similar approaches to computing normals at points of an IFS
fractal surface can be found in a few next papers devoted to ray-
tracing IFS attractors. Like in the paper mentioned above, all the
methods estimated the normals as the normals at points of the
geometric primitives approximating the subsets of an IFS
attractor. For example, in a paper by Traxler et al. [12], as
approximating primitives, boxes were used, whereas Gröller [13]
and then Wonka et al. [14] utilized for this goal images of a box
under some nonlinear mappings.

Another paper by Hart et al. [15] devoted to ray-tracing IFS
attractors, presented a different method to compute normals at an
IFS fractal surface. There, the normal was determined hierarchi-
cally as the weighted sum of the surface normals at the
intersections of a ray with the ancestry of bounding volumes
that surround the ray-fractal intersection point. As the bounding
volumes ellipsoids were used, and three methods of weighting
normals were described. The application of this method for
computing normals can also be noticed in other approaches to
ray-tracing affine IFS attractors [16,17].

Chen et al. [18] proposed a method to rendering affine 3D
fractals in real-time. An IFS attractor was rendered as a cloud of
points colored using a lighting scheme that did not involve
normals into computation. As a result, the approach produced
images that from the standpoint of today’s computer graphics
standards cannot be referred to as realistic ones.

Nikiel [19] used a 3D grid of voxels to represent an IFS fractal
approximation. The volume of voxels was then rendered in real-
time using one of the techniques of volume visualization.

Another method by Nikiel [19] was to approximate an IFS
attractor with 3D vectors, which could be replaced with CSG
primitives (e.g. spheres and cones) to perform rendering by means
of the one of the popular graphics APIs.

More recently, an interesting paper by Bourke [20] presents
how to employ the online 3D virtual environment of Second Life
by Linden Labs [21] to represent and explore approximations of
3D fractals in real-time. The fractal approximations were built
using some classic fractal constructions based on the iterative/
recursive replication of a geometric primitive. To encode the
construction procedures a built-in Second Life scripting language
was used. As geometric building primitives the volumes provided
by the Second Life modeling environment were used, including
boxes, spheres, cones, etc. The lighting of the fractal model was
consigned to the Second Life engine, which (presumably) based
lighting computation on the surface normals of the building
primitives.

In this paper we show how to realistically render scenes
consisting of many 3D IFS fractals in real-time. In Section 2 we
recall some basic facts concerning iterated function systems.
Then, in Section 3, we introduce our method of estimating
normals at points of an IFS fractal surface, and discuss a point-
based graphics approach to display fractal surfaces. Section 4
shows how hardware geometry instancing can be utilized to store
fractal models with extremely small memory requirements. Also,
we give some details concerning an implementation based on
DirectX 9.0c. Results and some further improvements, including
adaptive LOD and occlusion culling, are discussed in Section 5.
Finally, Section 6 summarizes the paper.

2. Affine IFS fractals

In this section we recall the major definitions and properties of
iterated function systems as well as establish the notation used
this paper.

An affine iterated function system (IFS) on R3 is a finite set
fw1; . . . ;wNg of N contractive affine mappings wi : R

3-R3. An
affine mapping wi is contractive if there exists an sA ½0;1Þ, such
that

JwiðxÞ �wiðyÞJrsJx� yJ; 8x; yAR3: ð1Þ

The minimum number for which the above inequality holds is
called the contractivity factor of the mapping wi. We will denote
this number by lðwiÞ.

Let wiðEÞ, E�R3, denote the image fwiðxÞ : xAEg of a set E

under the mapping wi : R
3-R3. An attractor of an IFS is the

unique solution of the set equation

A1 ¼
[N

i ¼ 1

wiðA1Þ ð2Þ

specified on the family of all the nonempty, bounded and closed
subsets of R3.

The above formula reveals an important characteristic of IFS
attractors, namely, they are self-similar sets in the sense that
every IFS attractor consists of subsets that are its images under
the mappings of the underlying IFS. Since the IFS mappings are
contractive, the component subsets wiðA1Þ, i¼ 1; . . . ;N, are
smaller than the attractor itself, for

diamðwiðA1ÞÞ ¼ supfJwiðxÞ �wiðyÞJ
: wiðxÞ;wiðyÞAwiðA1ÞgrlðwiÞsupfJx� yJ
: x; yAA1g ¼ lðwiÞdiamðA1Þ;

3 This memory budget problem becomes even more apparent when consider-

ing game consoles because they have much less RAM than PCs. For instance, the

current generation consoles Microsoft Xbox 360, Sony Playstation 3, and Nintendo

Wii are equipped with only 512 MB of RAM.

T. Martyn / Computers & Graphics 34 (2010) 167–175168



Download English Version:

https://daneshyari.com/en/article/442695

Download Persian Version:

https://daneshyari.com/article/442695

Daneshyari.com

https://daneshyari.com/en/article/442695
https://daneshyari.com/article/442695
https://daneshyari.com

