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We assemble triangular patches of total degree at most eight to form a curvature continuous surface.
The construction illustrates how separation of local shape from representation and formal continuity
yields an effective construction paradigm in partly underconstrained scenarios. The approach localizes
the technical challenges and applies the spline approach, i.e. keeping the degree fixed but increasing the
number of pieces, to deal with increased complexity when many patches join at a central point.
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1. Introduction

Complex surface blends, for example when capping a C? spline
surface by n patches, require an increase in either the degree or
the number of pieces compared to the surrounding regular spline
surface. Typically, the new degrees of freedom do not match the
formal continuity constraints and this results in an under-
constrained problem. One way to set the extra degrees of freedom
is to minimize a geometrically motivated functional, say approx-
imating an integral of the mean, Gauss or total curvature (see e.g.
[12,20,4]; these functionals have also been applied to faceted
representations—but here we are only concerned with curvature
continuous surfaces). Another is to minimize deviation from a
space that has too few degrees of freedom, for example by
minimizing a quadratic expression of (a convex combination of)
higher-order derivatives and hence penalizing higher degree (cf.
Definition 1 and Fig. 13). We use a third approach to setting extra
degrees of freedom: we first create a surface fragment that
captures the shape and then approximate this surface fragment to
satisfy the smoothness constraints. This two-stage approach of
separating shape from formal smoothness constraints was
introduced by Kar¢iauskas and Peters in [7]; and was already
hinted at by the composition with quadratic shapes in [15,19]. We
call it guided surfacing in the following. Guided surfacing
according to [7] has the nice side-effect of localizing, otherwise
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global, smoothness constraints. This very much simplifies deriva-
tion and analysis and avoids the need to invert large matrices
during construction.

There is a rich literature on construction of C? surfaces based
on quadrilateral meshes and patches, e.g. [6,2,15,21,19,3,10,11,
13,5,7,8]. Here, we consider three-sided patches as in [17],
corresponding to control nets with triangular facets. Since box-
splines do a good job when those meshes are regular, i.e. all
vertices have the same valence 6, the challenge is to complete a
C? box-spline surface by filling its isolated multi-sided holes (see
Fig. 1, right) using n (macro-)patches for an n-sided hole. Our
surface construction below is interesting in its own right since the
degree of the guided macro-patches output is 8, the same as the
lowest total-degree surface constructions in the literature
[14,17,18] (a bound also for finite element spaces [9, Ex 5.1]), but
has better shape control. Our main aim, however, is to illustrate
that separating shape from smoothness constraints allows setting
unconstrained parameters in a natural way. We show how a high
number n of features such as in high-order saddles, can be made
to blend with slowly dissipating curvature differences, not by
increasing the degree of the surface, but the number of
polynomial pieces in each patch—and by using the underlying
guide surface to set unconstrained parameters (such as the a; in
the local construction on Section 3) in a geometrically intuitive
fashion, by sampling.

Concretely, we consider the following setup. We are given a
triangulation with isolated extraordinary vertices, i.e. vertices of
valence n+6 such that each direct neighbor is regular of valence 6
(Fig. 1, middle). That is, every triangle has at least two regular
vertices. Wherever a triangle has three regular vertices, we
interpret the vertices of the triangle and their neighbor vertices
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Fig. 1. Input triangulation and boundary data. (left) No two extraordinary vertices
are direct neighbors. (middle) Triangulation with a single, isolated central non-6-
valent vertex, called extraordinary vertex. We interpret the vertices as box-spline
coefficients that define the (green) piecewise degree 4 surface ring right. (This ring
is not used in the construction, but will allow us to check the quality of the multi-
sided blend to existing data.) The circled vertices (middle) define the boundary
data b: position, first and second derivative, for extending the surface ring. (right)
These boundary data are shown as a depth three (red) net of a Bernstein-Bézier
(BB) coefficients.

Fig. 2. Guided surfacing. (left) A C> guide g (yellow cap) is determined with
reference to the boundary data b defined by a surrounding (green) surface. The
guide surface and the surrounding surface are in general not even connected (see
Section 2 and the Appendix for the derivation of a guide with the control net
structure of Fig. 3, bottom, left). (middle and right) The final piecewise polynomial
C? surface without gap: the algorithm to be specified constructs the red
replacement of the guide that matches the boundary data C? after reparameter-
ization.

as (box-spline) control points of a three-sided polynomial patch of
total degree 4, defined by the three-direction C?> box-spline [1]
with directions

[T -1 0 0 1 -1
o0 1 -1 1 -1])

m

Each extraordinary vertex of valence n in the triangular mesh
causes an n-sided hole in the regular surface complex. Assuming
that such vertices are separated (Fig. 1, left), we want to fill each
hole with a cap consisting of n macro-patches of degree 8 so that
the resulting surface is

e curvature continuous,

e the geometry of the cap incorporates that of the surrounding
surface, and

e the cap does not fluctuate in position, normal or curvature.

Construction overview. Our approach is as follows. First, we
construct a piecewise C? guide surface piece g : R*> — R (Fig. 2,
left). This surface represents the design intent in the sense that
the final surface will follow its shape. Even when the guide takes
into account the boundary data b, it is typically not suitable for a
final cap x since, as illustrated in Fig. 2, left,! it need not even join
continuously with the surrounding surface and can have a
completely different representation from the one needed for
further processing. We define a C? reparameterization p : R? — R?
from the boundary of the domain of x, where always six patches
meet at a vertex, to the center, where n#6 patches meet; and an

1 This paper is concerned with shape and curvature continuity up close.
Therefore it makes little sense to show any large triangulations where shape would
be dominated by regular box-splines. The figures in the submission can be
enlarged using the pdf zoom capability.

operator h that takes as input a sufficiently smooth function and
constructs surface pieces of degree 8 from the derivatives of its
input. Then the cap completing a C? surface is defined by
x:=h(g o p).

Paper overview. In Section 2, we construct the C> map p as well
as a prototype guide g, whose instantiation, in dependence of the
boundary data b is described in the Appendix. In Section 3, we
construct h piecemeal, via a simple local operator h8<> acting only
at vertices of go p. The surface construction then becomes a
straightforward localized enforcement of C? constraints. In
Section 4, we apply the tools of Section 3 to obtain a surface cap
that completes a C? surface (as in Fig. 2) and has good shape for
n<9. In Section 5, we address the cases n>9 by modeling each of
the n segments of the cap by four polynomial pieces. In Section 6,
we discuss modifications to obtain good shape both for very high
and very low valences; and we illustrate how derivative-based
functionals applied in R? fail to achieve the same effect as guide
surfaces.

2. C? functions on a polygonal domain

In this section, we prepare the technical background to be able
to focus later only on the high-level construction. We define an
n-gon Q<R?, a C?> map p that maps n copies of the right angle unit
triangle 4 to Q and the guide g that maps Q to R>. Also the final
hole-filling spline cap x maps 4 x {1,...,n} — R>; but it will only
be discussed in later sections. Given the purpose of each map, its
smoothness and symmetry, the derivations use standard machin-
ery in geometric design. But this does not mean that the
derivation is trivial. It reflects important choices of properties
and polynomial degree. Until Section 6, we assume

n¢{3,4,6} (1)

since n = 6 corresponds to the box-spline construction and n = 3
and 4 admit special (simpler) treatment, explained in Section 6.

2.1. The n-sided domain Q2

The n-gon Q2 is composed of n triangles
Aovv;, ;:={0 + u(V; — 0) + V(Vi,; —0),0<u,0<v,u+v<1},

where i =0,...,n—1 and, as illustrated in Fig. 3, top left,

Q=[JAovyviy;, o=

0 sin(io)

0} , Vi= [cos(loc)} ,  o=27n. (2)

The image of Aov;v;,; will be the ith segment of the map to be
constructed. We also define the unit triangle 4 € R? and Zvyvy, a
sector of the plane bounded by the rays ovy and ovy. With the
Bernstein-Bézier (BB) coefficients P}k (see e.g. [16, Chapter 10])
indexed as in Fig. 3, top right, the well-known conditions for two
patches p’ and p'*! abutting along the boundary defined by pj;' =
pf)j to join (parametrically) C!, respectively, C? are

Pii’ = voPy; + ViPoy.1 + V2Pl (3)

P’ = VoPy + 2VoViPh1 + ViPhji2
+ 2voVapy; + 2v1 Vol g + V3D (4)

with scalar weights determined by v;; 1 = Vo0 + V1V; + V2V;_q, as

vg:=2C, Vvi=2c, Vy=-—1, c= cosz?n, c=1—-c. (5)
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