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a b s t r a c t

An essential prerequisite to construct a manifold trihedral polyhedron from a given natural (or partial-

view) sketch is solution of the ‘‘wireframe sketch from a single natural sketch (WSS)’’ problem, which is

the subject of this paper. Published solutions view WSS as an ‘‘image-processing’’/‘‘computer vision’’

problem where emphasis is placed on analyzing the given input (natural sketch) using various

heuristics. This paper proposes a new WSS method based on robust tools from graph theory, solid

modeling and Euclidean geometry. Focus is placed on producing a minimal wireframe sketch that

corresponds to a topologically correct polyhedron.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The subject of this paper is related to 3D geometric modeling
and to sketch-based CAD, with an emphasis on natural (or partial-

view) sketch (Fig. 1(a)), i.e., a sketch without any hidden lines.
More specifically, this work deals with the problem of auto-
matically constructing a ‘‘polyhedron from a single natural sketch
(PSS)’’. The principal sub-problem of PSS is topological construc-
tion of a ‘‘wireframe sketch from a single natural sketch (WSS)’’,
for which a solution is presented here.

Regarding published research on the PSS/WSS problem, one
observes the following: numerous papers have appeared from
1980 until today on this problem, offering various solutions; see,
e.g., [1–9] and references therein. Despite that, it is fair to say that
existing solutions are far from satisfactory, as, even in 2008, new
methods are appearing (see, e.g., [10] and references therein) for
the plainest case of the PSS/WSS problem, where the polyhedron
(to be constructed) has only planar faces and is trihedral. Current
methods view PSS/WSS as ‘‘image-processing’’ or ‘‘computer
vision’’ problems, where emphasis is placed at analyzing the
given input (sketch) using tools and techniques lacking a robust
mathematical foundation. More specifically, many published
methods are based on the ‘‘line-labeling (LL) methodology’’
(initiated in [11–13]), which tries to associate each sketch line to

a ‘‘label’’ (with possible values ¼ ‘‘convex’’, ‘‘concave’’, ‘‘occlud-
ing’’) so that the whole set of labels is compatible with a
predetermined set of ‘‘labeling rules’’. Numerous authors have
explored this idea (see [5,14–18] and references therein). After
presenting, in a series of papers (see references in [17]) improved
versions of the methods in [5], Varley et al. conclude [17] that LL
has very little to offer towards solution of the PSS/WSS problem.

It must be emphasized that the predominant ‘‘image-processing’’/
‘‘computer vision’’ methodologies not only place focus on poor
heuristics like LL, but also they clearly place PSS/WSS out of the
correct context, which obviously is ‘‘graph theory’’ (for analyzing
the sketches) and ‘‘3D solid modeling’’ (for constructing the
corresponding polyhedron). Recently, Cao et al. [10] published a
paper on the PSS problem that indeed moves away from the
classical ‘‘image-processing’’ methodology and adopts ‘‘graph
theory’’ to solve the WSS problem. The proposed method includes
two main steps: (a) construction of an initial hidden structure,
and (b) reduction of this structure to the ‘‘most plausible one’’
according to ‘‘human visual perception’’ (these two main steps
correspond to Steps 3 and 4 in the description given in Section 5.1.
of [10]). Unfortunately, this method is far from being complete as
both steps (a) and (b) are based on heuristic criteria/processes
lacking a solid justification, e.g., realization of step (b) is solely
based on the heuristic criterion ‘‘the human visual system y

tends to interpret a figure in such a way as to produce an object
that is as symmetrical as possible’’ (see Section 5.4 in [10]). This
approach is problematic as it cannot handle objects that are far
from symmetric; indeed the test sketches used in [10] are either
symmetric or ‘‘almost symmetric’’.
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The present research aims at producing a PSS algorithm that is
free from the shortcomings of the ‘‘image-processing’’ methodol-
ogy as well as of a technique like [10] based solely on ‘‘graph
theory’’. Indeed, an improved WSS algorithm is presented here
employing robust tools from graph theory, 3D solid modeling and
Euclidean geometry. A detailed topological analysis of sketches is
given, followed by an efficient technique to complement a given
‘‘visible sketch’’ with appropriate hidden parts. The scope of the
present research covers manifold polyhedra without holes, which
are also trihedral. The employed sketch is a natural sketch, where:

1. No element of the natural sketch causes two or more visible
regions of it to correspond to one visible region in the
wireframe sketch to be constructed.

2. At most one T-junction (: this is defined in Section 2) exists in
each region of the sketch.

The proposed methodology aims at producing a polyhedron,
which is CAD-usable, i.e., a valid 3D solid model. This objective,
combined with the fact that no information is available regarding
the hidden part of the polyhedron, leads to the conclusion that
this hidden part should be minimal (e.g., a single planar face) and
at the same time sufficient to define a valid solid model. This
‘‘minimal-completion strategy’’ implies that from the given
natural sketch a wireframe sketch should be derived where the
number of hidden lines/junctions/regions is as small as possible.

2. Geometric modeling of sketches and solids with an emphasis
on topological description

A sketch is a set of straight lines on a plane that intersect at
junctions (i.e., points). In current research [5,8,10,19] a sketch is
considered to depict an orthographic projection of a manifold
trihedral solid (each vertex of the solid belongs to exactly three
faces) with planar faces. The solid (polyhedron) is considered to
be in ‘‘general position’’ with respect to the given projection plane,
i.e., no face or edge of the solid is perpendicular to that plane.
Adjacent faces (edges) of a solid lie on distinct planes (curves).

The user draws a natural (or partial-view) sketch (Fig. 1(a)), i.e.,
a sketch without hidden lines, in the most informative view: this
means that there is nothing at the ‘‘back of the sketch’’ that cannot
be directly inferred from the visible part of it. Loops of lines and
junctions form regions of the sketch; see an example of a region in
Fig. 1(b). In this work, a natural sketch is modeled as a plane graph
and graph theory is employed to produce a host of theoretical and
algorithmic tools to support the ‘‘sketch-to-solid transformation’’.

Definition 1. A valid wireframe sketch (Fig. 1(c)) is a graph
resulting from a given natural sketch to which hidden lines,
hidden junctions and hidden regions are added, so that

1. Whenever a hidden line intersects a visible line at a point not
identical with a junction of the given natural sketch, this point
is not considered to be a junction of the wireframe sketch.

2. Every junction is adjacent to three lines; i.e., the degree of each
junction j is d(j) ¼ 3 [20].

3. Every line is adjacent to two regions.
4. The sketch is a connected graph [20].
5. Two adjacent regions of the sketch share exactly one line or

two-or-more collinear lines [21].

The lines, junctions and regions of a sketch are called elements of

this sketch. Respectively, the elements of a solid are its vertices,
edges and faces. We note that the hidden elements of a sketch are
indicated by a subscript ‘‘h’’, while the visible elements by a
subscript ‘‘v’’.

The problem to be solved is derivation of a manifold trihedral
polyhedron whose projection onto the sketch’ plane is identical
with the constructed wireframe sketch. A ‘‘one-to-one correspon-
dence’’ exists between lines/junctions/regions of the wireframe
sketch and the edges/vertices/faces (respectively) of the corre-
sponding polyhedron. The method presented below assumes that
there are no elements of the natural sketch causing two or more
visible regions of it to correspond to one visible region in the
wireframe sketch to be constructed.

A wireframe sketch is produced from a given natural sketch,
when to the latter’s boundary elements (elements adjacent to
both the interior and the exterior of the sketch [20]) appropriate
hidden lines and junctions are added. There are three types of
boundary junctions in a natural sketch, according to their degree
(see Fig. 2):

(a) Boundary junctions of d(j) ¼ 3 (see junction j in Fig. 2(a)):
Each one belongs to two visible regions and one hidden, and it
is adjacent to visible lines only.

(b) L-junctions (see junction j in Fig. 2(b)): Each one is of degree 2.
It belongs to one visible region, two hidden regions, and it is
adjacent to two visible lines and one hidden.

(c) T-junctions (see junction jT in Fig. 2(c)): Although a junction of
this kind is drawn as a junction of degree three, it implies
depth and its true location is in the hidden part of the object
[5,17]. Thus, a T-junction is a junction of degree 1, since it is
adjacent to one visible line and to two hidden lines. The two
collinear lines adjacent to a T-junction are considered as one
occluding line (see line e in Fig. 2(d)), which belongs only to the
occluding region (region R in Fig. 2(d)). A T-junction belongs to
two (one) hidden regions and to one (two) partially visible

regions (see the bold-marked regions in Fig. 2(e)). It should be
emphasized that, in the methods proposed here, partially
visible regions are always included in the set of visible
regions. The hidden region adjacent to the occluding line is
called occluded region.

It is noted that since PSS with T-junctions is still an unsolved
problem, we consider in this paper the simplest case, where at
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Fig. 1. (a) A natural sketch, (b) R is a region of the natural sketch/plane graph, and

(c) a wireframe sketch corresponding to the plane sketch in Fig. 1(a).
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Fig. 2. (a) The junction j is a boundary junction with degree ¼ 3, (b) the junction j

is an L-junction, (c) T-junction jT and its true position, (d) the line e is an occluding

line and belongs to the occluding region R, (e) the bold-marked regions are

partially visible regions, and (f) two T-junctions in a region.
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