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a b s t r a c t

Shape analysis plays a pivotal role in a large number of applications, ranging from traditional geometry

processing to more recent 3D content management. In this scenario, spectral methods are extremely

promising as they provide a natural library of tools for shape analysis, intrinsically defined by the shape

itself. In particular, the eigenfunctions of the Laplace–Beltrami operator yield a set of real-valued

functions that provide interesting insights in the structure and morphology of the shape. In this paper,

we first analyze different discretizations of the Laplace–Beltrami operator (geometric Laplacians, linear

and cubic FEM operators) in terms of the correctness of their eigenfunctions with respect to the

continuous case. We then present the family of segmentations induced by the nodal sets of the

eigenfunctions, discussing its meaningfulness for shape understanding.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Shape analysis aims to develop computational tools for
reasoning on properties of the objects’ shape, and is pivotal in a
large number of applications, ranging from traditional geometry
processing to more recent 3D content management techniques.

In the recent past, research in shape analysis was boosted by
the need to add semantics to the geometric description of 3D
objects, in order to facilitate the sharing and management of 3D
content in many emerging web-based applications. A semantic
description of 3D objects is commonly understood as a descrip-
tion of the content by means of terms which are meaningful in
some domain of knowledge. For example, a given model can be
described as being a table, made of four cylindrical legs and an oval

top. Hence, a semantic description calls for segmentation algo-
rithms which capture semantically relevant features in an
automatic manner.

Most of the methods developed so far for shape analysis and
segmentation do not directly provide any semantically relevant
explicit description of the shape, but rather provide a characteriza-
tion of the geometric and structural properties of the object
boundary. Semantic properties are taken into account, at some
extent, by cognitive theories supporting part-based decompositions

or minima rule-based approaches. Part-based decomposition tech-
niques build on Biederman’s theory of perception, which
characterizes an object as a compound of primitive basic parts
(e.g., planes, spheres, cylinders, cubes) [10]. The second class of
methods are based on the so-called minima rule, which suggests
that we perceive relevant parts by focusing our attention on lines of
concave discontinuity of the tangent plane [26]. For a recent survey
of segmentation methods, we refer the reader to [54].

Our interest is in the development of methods for shape
analysis and segmentation able to capture a varied set of
morphologically relevant features, possibly at different scales: in
other words, we seek for a library of tools supporting the semantic
annotation of digital shapes. Shape understanding, indeed, is a
very complex task and it is now widely accepted that no single
segmentation method is capable of capturing relevant features in
a broad domain of shapes. In [3], shape understanding is seen as a
multi-segmentation task driven by the user, who uses in parallel a
set of segmentation algorithms and composes the final segmenta-
tion with selection and refinement operations on the segments. In
that work, the authors push forward the idea of semantic
annotation by allowing the user to associate textual tags, defined
in an ontology, to the segments.

In this scenario, spectral methods are extremely promising, as
they naturally provide a set of tools for shape analysis that are
intrinsically defined by the shape itself. Spectral methods have
recently gained much interest in computer graphics [62], with
applications that include mesh compression [30], parametrization
[25,43], segmentation[31,35], remeshing [17], filtering [34,57],
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correspondence [27], matching and retrieval [28,49,52], manifold
learning [5], and imaging or medical imaging applications
[44,38,50].

In particular, the eigenfunctions of the Laplace–Beltrami
operator yield a family of real-valued functions that provide
interesting insights in the structure and morphology of shapes. In
this paper, we focus on the nodal sets of the Laplace–Beltrami
eigenfunctions, showing that they induce a shape decomposition
which captures features at different scales, generally well aligned
with perceptually relevant shape features. The set of decomposi-
tions induced by the eigenfunctions yields the sought library of
intrinsic shape segmentations.

The first contribution of this paper is the analysis of the
correctness of the eigenfunctions computed using different
discretizations of the Laplace–Beltrami operator (Section 2),
evaluated with respect to the exact results known from the
theory in the continuous case (Section 3). The second contribution
is the introduction of the set of segmentations induced by the
nodal sets of the eigenfunctions; the segmentations are discussed
in terms of their quality and robustness (Section 4). Finally, we
draw some conclusive remarks and highlight possible extensions
of this work (Section 5).

2. The Laplace–Beltrami operator

Let f be a C2 real-valued function defined on a differentiable
manifold M with Riemannian metric [7]. The Laplace–Beltrami

operator D is

Df :¼divðgrad f Þ,

where grad and div are the gradient and divergence on the
manifold M [11]. The Laplacian eigenvalue problem is stated as

Df ¼ �lf . (1)

Since the Laplace–Beltrami operator is self-adjoint and semi-
positive definite [51], it admits an orthonormal eigensystem

B:¼fðli;ciÞgi, that is a basis of the space of square integrable
function, with Dci ¼ lici, l0pl1p � � � ; lipliþ1 � � �pþ1. For a
detailed discussion on the main properties of the Laplace–
Beltrami operator, we refer the reader to [46,51,59].

2.1. The discrete case

The solution to (1) on a surface is frequently approximated by a
piecewise linear function f :T! R over a triangulation T with
vertices V :¼fpi; i ¼ 1; . . . ;ng. The function f on T is defined by
linearly interpolating the values f ðpiÞ of f at the vertices of T. This
is done by choosing a base of piecewise-linear hat-functions ji,
with value 1 at vertex pi and 0 at all the other vertices. Then f is
given as f ¼

Pn
i¼1 f ðpiÞji. Discrete Laplace–Beltrami operators are

usually represented as

Df ðpiÞ:¼
1

di

X
j2NðiÞ

wij½f ðpiÞ � f ðpjÞ�, (2)

where NðiÞ denotes the index set of the 1-ring of the vertex pi, i.e.,
the indices of all neighbors connected to pi by an edge. The masses
di are associated to a vertex i and the wij are the symmetric
edge weights. To write (2) in matrix form, we define the
vector f:¼ðf ðp1Þ; . . . ; f ðpnÞÞ

T of the function values at the vertices,
the weighted adjacency matrix W :¼ðwijÞ, and the diagonal
matrix V :¼diagðv1; . . . ;vnÞ containing as diagonal elements
vi ¼

P
j2NðiÞwij. Then, we can define a stiffness matrix A:¼V �W ,

the lumped mass matrix D:¼diagðd1; . . . ; dnÞ, and finally the Laplace

matrix L:¼D�1A (generally not symmetric). Using these matrices,
Df ðpiÞ is the i-th component of the vector Lf. The problem (1) can

then be written as Lf ¼ lf or better as a generalized symmetric
problem Af ¼ lDf. In the following, we distinguish between
geometric operators and finite-element operators on the basis of
different edge weights and masses.

2.1.1. Discrete geometric Laplacians

A very simple choice of weights wij for a graph is the adjacency
matrix (1 if pi and pj are connected by an edge, 0 otherwise) and
unit masses di ¼ 1. This operator and simple variations are called
graph Laplacians as they usually only consider the connectivity
and no geometry. Lévy [33] gives a very good overview and
compares this graph Laplacian with a discretization by Desbrun
et al. [16] (presented below).

One of the early geometric approaches has been described by
Pinkall and Polthier [45], who discretize the Laplace–Beltrami
operator using constant masses (i.e., di:¼1) in (2) and weights

wij:¼
cotðaijÞ þ cotðbijÞ

2
, (3)

where aij and bij denote the two angles opposite to the edge ði; jÞ.
Because of the lack of a proper mass weighting the cotangent
weights alone still depend on mesh sampling.

Desbrun et al. [16] refine the discretization in (3) by using a
normalization factor, which takes into account the area aðiÞ of all
triangles at vertex i, i.e.,

di:¼aðiÞ=3. (4)

Lévy [33] uses this operator but instead of solving the symmetric
generalized problem Af ¼ lDf he looks at the non-symmetric
matrix L ¼ D�1A and then computes the eigenvalues and eigen-
functions of the symmetric matrix ðLþ Lt

Þ=2 which yields a
different spectrum.

Meyer et al. [36] modify the area normalization by Desbrun
and propose the mass weighting

di:¼aV ðiÞ, (5)

with aV ðiÞ the area obtained by joining the circumcenters of the
triangles around vertex i (i.e., the Voronoi region). Founding on
discrete exterior calculus, [15,34] reach the same operator. Lévy
and Vallet [34] symmetrize the operator by using 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aV ðiÞaV ðjÞ

p
instead of the inversion of the mass matrix 1=aV ðiÞ. This leads to
the system D�1=2AD�1=2y ¼ ly with the same eigenvalues. The
original eigenvectors can be retrieved by f ¼ D�1=2y.

Belkin et al. [5,6] describe a discretization of the Laplace–
Beltrami operator on the k-nearest neighbor graph T of a point
set fpig

n
i¼1 sampled on an underlying manifold and an extension to

meshes by using the heat kernel to construct the weights. The
mesh version [6] considers weights not only at the edges of the
mesh, but in a larger neighborhood of a vertex (the heat kernel is
cut-off thus sparsity is maintained). While the geometric
operators in (3)–(5) are not convergent in general and cannot
deal well with non-uniform meshes [60], this method exhibits
convergence and does not depend much on the shape of the
triangles, just on the density of the vertices. However, it can be
used to compute eigenfunctions only on closed meshes, as it is
unclear how to comply with the Dirichlet or Neumann boundary
condition. Another discretization by Floater can be found in [22],
but is not a good choice for eigencomputations due to its non-
symmetry.

2.1.2. Discrete FEM Laplacians

The solution of the Laplace eigenvalue problem (1) can be
computed by imposing that the equation Df ¼ �lf is verified in a
weak sense, that is,

hDf ;jiiL2
ðMÞ ¼ �lhf ;jiiL2

ðMÞ; 8i. (6)
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