
Computers & Graphics 32 (2008) 307–319

Technical Section

Optimizing the management of continuous level of detail
models on GPU

O. Ripollés�, M. Chover

Dept. Lenguajes y Sistemas Informáticos, Universitat Jaume I, Castellón, Spain

Received 27 July 2007; received in revised form 14 December 2007; accepted 12 February 2008

Abstract

In this paper we present a new continuous multiresolution framework which has been developed in view of the outstanding evolution

of hardware. Our interest not only focuses on exploiting GPUs possibilities, but also on making the best possible use of the capabilities

offered by new bus technologies. On the one hand, we store the geometry, based on triangle strips, in high-performance memory on the

GPU, offering fast rendering time. On the other hand, we have designed our level-of-detail extraction algorithm in order to make the

most of current PCI Express bus characteristics, by sending the minimum information in the most appropriate way while taking into

account the appearance of degenerate triangles. The results section shows that our model improves the efficiency of previously existing

solutions. Its easy integration and its short extraction time make it suitable for game engines and graphics libraries which often resort to

discrete models when it comes to selecting a multiresolution technique.

r 2008 Elsevier Ltd. All rights reserved.

Keywords: Multiresolution modeling; Level of detail; Graphics hardware

1. Introduction

In recent years, the tendency has been to include
geometrically complex scenes in interactive graphics
applications, such as computer games or virtual reality
environments. These highly realistic scenarios often involve
many polygonal meshes made up of a high number of
triangles, which poses a problem for maintaining a high
frame rate. One of the possible solutions to this problem is
the use of level-of-detail techniques, which represent an
object through a set of approximations at different levels of
detail to allow the recovery of any of them on demand [1].
Nowadays, this can be considered as a compulsory feature.
In this sense, graphics libraries like OpenInventor or
OpenSceneGraph, and game engines such as Torque or
Ogre, introduce multiresolution models to easily reduce the
amount of geometry that must be rendered in a scene, thus
resulting in an improvement in performance.

The first multiresolution models that were developed
were based on a relatively small number of approximations
(usually between 5 and 10) [2], and were known as discrete
multiresolution models. These discrete models suffer from
popping artifacts that appear when switching between the
different levels of detail, causing noticeable and visually
disturbing effects. Later, continuous multiresolution mod-
els appeared with the aim of improving discrete models, as
they offered a wide range of different approximations to
represent the original object.
Despite the better features shown by continuous models,

traditional solutions usually involve discrete multiresolu-
tion models. The reasons behind this decision are quite
simple: discrete models are more easily integrated and they
also offer an easier and more straightforward level of detail
update. Many authors consider that using continuous
models is not worth the effort, as in an interactive
application the viewer keeps moving all the time and this
would entail updating the whole scene continuously, which
would lower overall performance. In this sense, it is easier
to discard one model and use another one (which happens
with discrete models) and accept the popping artifacts.

ARTICLE IN PRESS

www.elsevier.com/locate/cag

0097-8493/$ - see front matter r 2008 Elsevier Ltd. All rights reserved.

doi:10.1016/j.cag.2008.02.003

�Corresponding author. Tel.: +34964 728337; fax: +34 964 728435.

E-mail addresses: oscar.ripolles@uji.es (O. Ripollés), chover@uji.es

(M. Chover).

www.elsevier.com/locate/cag
dx.doi.org/10.1016/j.cag.2008.02.003
mailto:oscar.ripolles@uji.es
mailto:chover@uji.es
mailto:chover@uji.es


A further improvement on continuous multiresolution
models are those that present view-dependent capabilities,
which enable an object to include different resolutions in
different areas at the same time. These models, although
they offer better granularity, present important time
limitations as their extraction process is usually more
complex and they need to obtain some extra information of
the scene conditions. These time-consuming characteristics
make them less interesting for graphics libraries and game
engines.

As we all know, graphics hardware has improved
outstandingly over recent years. Performance is doubling
every six months [3], in contrast to microprocessors which
grow by approximately 40% every year [4]. Thus, the
possibility of taking maximum benefit from its computa-
tional power, its tremendous memory bandwidth, the
possibility of parallel programming, as well as the
alleviation of CPU load, has increased the interest in using
GPUs as a computational solution, not only for computer
graphics, but also for general-purpose routines. Further-
more, the development of the PCI Express bus has boosted
the performance of AGP buses, making the traffic of
information between the CPU and the GPU much more
efficient.

Since hardware was improving and new technologies
were presented, we decided to develop a new continuous
multiresolution framework to take advantage of these new
features. Our intention is to provide a competitive solution
in comparison with discrete models.

The solution presented in this paper has been devised
from the experience obtained after analyzing different
multiresolution approaches, and in a more precise way,
after the implementation of LodStrips [5,6]. This contin-
uous model was entirely based on optimized hardware
primitives, triangle strips, and dealt with the creation of
degenerate triangles applying pre-calculated filters. Never-
theless, this multiresolution model presented important
limitations. The main drawback was the extraction process,
which entailed updating the strips by performing costly
random insertions and resizes.

Thus, our main objective was to develop a level-of-detail
update routine which maximized the efficiency of the
extraction process and the data traffic through the bus. The
approach presented in this paper, Speed Strips, exploits
the new hardware capabilities in two ways. On the one

hand, the possibility of storing geometry information in the
graphics hardware by means of vertex buffer objects vastly
improves the visualization time. On the other hand, the
PCI Express bus supports isochronous data transfers and
different QoS levels, which guarantees that the data arrive
at their destination in a given time. The use of multiple
isochronous virtual channels per lane presents a perfect
solution for applications which require real-time data
transfer [7]. With these two features in mind, we have
developed a triangle strips updating routine which changes
the strips in one single step by working directly with the
information stored in the GPU and sending the minimum
amount of information in the most appropriate way.
Speed Strips presents the following features:

� Easy implementation, as it offers integration into an
application with little effort.
� Low memory cost, if compared with discrete models

which involve having to store different approximations
of the same model.
� Short extraction time, as it is able to compete with the

static mesh substitution approach.
� Based on triangle strips, which not only offer a compact

representation of the connectivity existing in a triangle
mesh but also a faster rendering.

Fig. 1 presents a scene of the Ogre rendering engine where
our multiresolution model has been integrated. More than
15million polygons are rendered in real time. To adjust the
detail, we have considered the distance to the viewer
criterion. We have also color-coded the different models to
represent the level of detail at which they are rendered.
This paper presents the following structure. Section 2

contains a study of the work previously carried out on
multiresolution modeling. Section 3 presents the general
framework in which this model has been developed.
Section 4 provides thorough details of the proposed
method. Section 5 offers different versions of the original
method which have been developed for testing purposes.
Section 6 includes a comparative study of our algorithm
against other possible solutions. Lastly, Section 7 contains
comments on the results obtained and a brief outline of
future lines of work.

ARTICLE IN PRESS

Fig. 1. Color-coded LOD scene with many Speed Strips models inside the Ogre rendering engine.

O. Ripollés, M. Chover / Computers & Graphics 32 (2008) 307–319308



Download English Version:

https://daneshyari.com/en/article/442738

Download Persian Version:

https://daneshyari.com/article/442738

Daneshyari.com

https://daneshyari.com/en/article/442738
https://daneshyari.com/article/442738
https://daneshyari.com

