
Computers & Graphics 31 (2007) 100–118

Technical Section

Comparison of triangle strips algorithms$

Petr Vaněček�, Ivana Kolingerová

Department of Computer Science and Engineering, Center of Computer Graphics and Data Visualization, University of West Bohemia, Pilsen, Czech Republic

Abstract

Triangle surface models belong to the most popular type of geometric objects description in computer graphics. Therefore, the

problem of fast visualization of this type of data is often solved. One popular approach is stripification, i.e., a conversion of a

triangulated object surface into strips of triangles. This enables a reduction of the rendering time by reducing the data size which avoids

redundant lighting and transformation computations.

The problem of finding an optimal decomposition of triangle surface models to a set of strips is NP-hard and there exist a lot of

different heuristic stripification techniques. This paper should help to orient in the jungle of stripification algorithms. We present an

overview of existing stripification methods and detailed description of several important stripification methods for fully triangulated

meshes. As different authors usually use different data sets and different architectures, it is nearly impossible to compare the quality of

stripification methods. For this reason we also present a set of tests of these methods to give the reader a better possibility to compare

these methods.

r 2006 Published by Elsevier Ltd.

Keywords: Computer graphics; Triangle; Triangle strip; Dual graph

1. Introduction

Triangle surface models (also called triangle meshes) are
very often used in various applications (such as CAD, GIS,
medical research, computer games) because they are easy
to create, good to manipulate and edit and they have very
good hardware support for visualization. In many of these
applications, the rendering speed is crucial, thus the
problem of fast visualization of this type of data is often
being solved.

The performance of today’s rendering hardware is
usually very high and the speed of the rendering is bounded
not only by the power of the GPU but also by the rate at
which the triangulated data is sent into the GPU. To
decrease the amount of data, one can use some techniques
to prevent sending of unnecessary triangles, e.g., visibility

culling, or some kind of simplification of complex objects,
e.g., (C)LOD—continuous level of detail. Still it is
important to reduce the time needed to transmit the set
of triangles by compressing the topological information
and decompressing at the rendering stage. As neighboring
triangles share an edge, it is possible to avoid sending the
common vertices twice by a special order of triangles,
called a triangle strip or tristrip.
A sequential tristrip is a sequence of nþ 2 vertices that

represents n triangles: in Fig. 1 the sequence (1,2,3,4,5,6)
represents triangles n123, n234, n345, and n456. Using
the sequential strip, the transmit cost of n triangles can be
reduced by the factor of three (from 3 � n to nþ 2 vertices).
There also exists a situation where the triangle adjacency

does not allow a sequential encoding. In Fig. 2 the
sequence (1,2,3,4,5,6) produces an invalid triangle n456.
An extra vertex has to be added to change the sequence to
(1,2,3,4,3,5,6). This operation is called swap and tristrips
with swaps are called generalized tristrips. Still, the trans-
mit cost is reduced more than twice, from 3 � n to
nþ 2þ #swaps vertices.
To increase the rendering speed, it is necessary to

minimize both the number of swaps and the number of

ARTICLE IN PRESS

www.elsevier.com/locate/cag

0097-8493/$ - see front matter r 2006 Published by Elsevier Ltd.

doi:10.1016/j.cag.2006.10.003

$This work was supported by Ministry of Education of The Czech

Republic—project MSM 235200005.
�Corresponding author.

E-mail addresses: pvanecek@kiv.zcu.cz (P. Vaněček),

kolinger@kiv.zcu.cz (I. Kolingerová).

URLs: http://herakles.zcu.cz/�pvanecek,

http://iason.zcu.cz/�kolinger.

www.elsevier.com/locate/cag
dx.doi.org/10.1016/j.cag.2006.10.003
mailto:pvanecek@kiv.zcu.cz
mailto:kolinger@kiv.zcu.cz
http://herakles.zcu.cz/∼pvanecek
http://herakles.zcu.cz/∼pvanecek
http://iason.zcu.cz/∼kolinger
http://iason.zcu.cz/∼kolinger

triangle strips. As the triangle strips can potentially reduce
the amount of data transmission, transformation and
lighting computations, many graphics libraries support it,
e.g., IRIX-GL, OpenGL, and Direct3D.

Evans et al., showed that covering the mesh by an
optimal set of triangle strips is NP-hard [1]. To compute a
stripification in a polynomial time, it is necessary to use
some heuristic that finds some local optimum (usually in
linear time).

As the number of triangles in meshes grow as fast as the
power of GPUs and the bus bandwidths, the stripification
topic is still very important and many algorithms on
stripification exist. In this paper, we present an overview of
existing methods and their comparison.

In Section 2 a short overview of existing stripification
methods is presented. The fundamentals of some of the
most important methods are described in Section 3. A
comparison of these methods is discussed in Section 4.
Some conclusions are given in Section 5.

2. State of the art

In this section we present a short description of existing
algorithms. As the number of stripification algorithms is
quite high, first we propose several ways of classification.

2.1. Classification

Triangle stripification algorithms can be categorized in
several different ways. Here we enumerate five classifica-
tions that are often used:

(1) According to the type of input data (isolated vertices,
triangles, etc.).

(2) According to the type of meshes (static meshes, CLOD,
etc.).

(3) According to the type of optimization (minimization of
number of strips, minimization of number of vertices).

(4) According to the type of heuristic function (local
heuristic, global heuristic).

(5) According to the hardware support (optimization for
vertex caches).

One of the possible classifications is based on the type of
input data. The first category of algorithms takes only the
geometrical information, i.e., only the vertices, as an input
[2,3]. Typically, these algorithms work only with data sets
on a plane or with a height field. The second category takes
triangles of the model and tries to build triangle strips, not
necessarily a single strip, without changes in topology
[4–8]. The third category is more general as it takes
polygons that are triangulated with respect to the
stripification [9–12]. The last category takes either triangles
or polygons and inserts some extra vertices (Steiner points)
to achieve a single triangle strip [2,13,14]. In this paper, we
will focus on category two and three according to this
classification.
The majority of stripification algorithms are designed for

static meshes, i.e., meshes without changes in topology. As
the complexity of some industrial models are very high, the
need for visualization of view-dependent meshes is
growing. There are two approaches to use triangle strips
in LOD meshes. First, special stripification methods that
produce a stripification with some properties [6,13,15] and
second, special data structures and algorithms that can
manage the strips during the view-dependent visualization
[16–19]. In this work, we use only static meshes for our
comparison.
Furthermore, the term ‘optimal stripification’ is not

uniquely determined. One can optimize the stripification
algorithm to produce a low number of vertices needed
for strips to decrease the amount of data sent through the
bus to the rendering engine and speed up the rendering.
As the initialization of a new triangle strip costs some
extra time, it is also desirable to minimize the number of
generated triangle strips [6,8,20]. It is not possible to
minimize both these parameters at once—decreasing the
number of triangle strips often leads to increase in the
number of vertices (due to higher number of swaps,
needed to preserve the strip) and vice versa. Very often,
the stripification algorithms contain more heuristic func-
tions for vertex or strip optimization. In our comparison
we use both type of heuristic functions if possible, to show
the influence of vertex/strip trade off on the rendering
speed.
We can also classify the stripification algorithms

according to the type of the heuristic function. Very often,
the heuristic function only decides in which direction the
strip should continue. For such a decision only some local
criterion is sufficient. To obtain a better stripification, some
global heuristic is necessary [9,6,14,21].
Todays GPUs contain large vertex caches and their use

can significantly reduce the bandwidth. This criterion was
taken into account and several algorithms that respects the
vertex cache were developed [22,23].
In the next subsection we describe most of the published

stripification algorithms classified according to the
type of input data. As the number of stripification
algorithms is quite high, the list of algorithms is probably
not complete.

ARTICLE IN PRESS

Fig. 2. A generalized strip.

Fig. 1. A sequential strip.

P. Vaněček, I. Kolingerová / Computers & Graphics 31 (2007) 100–118 101

Download English Version:

https://daneshyari.com/en/article/442755

Download Persian Version:

https://daneshyari.com/article/442755

Daneshyari.com

https://daneshyari.com/en/article/442755
https://daneshyari.com/article/442755
https://daneshyari.com

