
Computers & Graphics 30 (2006) 754–766

Technical Section

G-strokes: A concept for simplifying line stylization

Tobias Isenberga,�, Angela Brenneckeb

aDepartment of Computer Science, University of Calgary, Canada
bDepartment of Simulation and Graphics, Otto-von-Guericke University of Magdeburg, Germany

Abstract

In most previous NPR line rendering systems, geometric properties have been directly used to extract and stylize certain edges.

However, this approach is bound to a tight stylization of strokes as the focus lies on the edge extraction. Styles are applied to the

currently extracted edges, making it necessary to re-do certain computations whenever several different styles are to appear concurrently

in the same rendition. Consequently, the generation of renditions is often constrained to one or two styles to keep computational cost

low. To broaden the possibilities of generating highly expressive line drawings we introduce the concept of G-strokes. In contrast to the

above-mentioned approach, we propose to keep all edges and to extract the geometric properties instead. According to these properties,

one style could be applied to a particular set of edges and another style could be applied to another set of edges without having to extract

the designated edges anew. This makes it easy to enrich the set of line stylization means, allowing more freedom and creativity for

generating varied line drawings. We show a number of possible G-strokes using both simple and complex examples to demonstrate the

power of our approach.

r 2006 Elsevier Ltd. All rights reserved.

Keywords: Non-photorealistic rendering; Line rendering; Line stylization; Stroke pipeline; G-strokes; G-buffers

1. Introduction

In the past two decades, line rendering has been
established as one of the major areas of research within
the growing field of non-photorealistic rendering (NPR)
[1,2]. Fueled by the development of a variety of silhouette
extraction algorithms [3] as well as feature detection
techniques (e.g., [4]), numerous methods for line and
stroke-based rendering using a wide range of styles have
been and are being conceived. In particular, the use of
object-space edge extraction facilitates the further styliza-
tion and processing of these edges as strokes since they are
available in analytic form.

Typically, the stylization process is implemented using a
stylization pipeline within which strokes are processed. In
general, a stylization pipeline comprises a sequence of
pipeline elements. At each stage of the pipeline, data is
either modified, added, or simply prepared for the next
element in line. The sequential approach of this procedure,

therefore, is appropriate for the analytic stroke stylization
process where strokes are to be stylized in a number of
steps [5–7]. The interconnection between the line drawing
and its generation technique is crucial to the below-stated
problem and the necessity of the G-strokes concept: the
rendition’s explanatory power depends on the stroke’s
topology and style which are in turn established and altered
by the pipeline elements. Therefore, the pipeline elements
as well as their combination have to be as flexible as
possible to achieve the favored line drawings.
However, the more stylization elements are being created

and added to the stylization pipeline, the more difficult the
stylization process itself becomes. This is because a new
element may introduce new data that not only has to be
captured but also has to be processed. For instance, texture
or line thickness parameters may be added to the
coordinates and their indices of the current stroke set.
Whenever the indexing of the strokes changes, the
parameters also have to change. Consequently, all pipeline
elements that already have been implemented need to be
adapted as well in order to handle the new data. Only then
can the old elements be used together with the new one.

ARTICLE IN PRESS

www.elsevier.com/locate/cag

0097-8493/$ - see front matter r 2006 Elsevier Ltd. All rights reserved.

doi:10.1016/j.cag.2006.07.006

�Corresponding author. Tel.: +1403 210 9507; fax: +1 403 284 4707.

E-mail address: isenberg@cpsc.ucalgary.ca (T. Isenberg).

www.elsevier.com/locate/cag
dx.doi.org/10.1016/j.cag.2006.07.006
mailto:isenberg@cpsc.ucalgary.ca


Likewise, every new element also has to ensure that it can
handle the increasing number of already existing data sets.
Therefore, a two-way dependency between the pipeline’s
elements and the processed stroke data exists. This makes
the development of a comprehensive line stylization and
rendering toolkit increasingly complex and difficult to
manage.

Inspired by the groundbreaking work of Saito and
Takahashi on G-buffers [8], we propose the concept of
G-strokes as a solution to this problem. We regard all data
added to the stroke (coordinates and indices) by a pipeline
element as geometric stroke properties and call them
G-strokes. These are maintained parallel to the underlying
geometry. In this context, for example, the stroke’s
parameterization (e.g., for texturization) and visibility are
geometric properties. The latter could be captured in a
G-stroke telling the current stroke set which strokes are
visible and which are not and could then be used to apply a
certain style to the extracted edges (see Fig. 3).

In contrast to Saito and Takahashi’s G-buffers,
G-strokes might need to be adapted during the stylization
process since the underlying geometry or topology of the
stroke may change. We demonstrate how this can be
achieved and how the necessary programming work can be
minimized, making it easy to add new pipeline elements
without having to care for the existing data sets.

The remainder of this paper is structured as follows. In
Section 2 we review related work with respect to the
concept presented in this paper. Then, in Section 3 we
discuss the problems arising from the previous handling of
stylization pipelines and introduce our G-strokes concept
to overcome them. In Section 4 we address implementation
issues and design decisions we made to realize the concept.
In Section 5 we present a number of case studies in order to
illustrate the flexibility of a G-strokes-based stylization. In
Section 6 we summarize our contribution and discuss
directions for future work.

2. Related work

The field of NPR has diversified and grown considerably
in recent years [1,2]. However, line rendering was one of the
first issues to be discussed [8–10] and this topic continues to
be one of the major areas of NPR (e.g., [3,4,7,11,12]). As
one of the earliest and most important contributions for
the area, Saito and Takahashi presented the G-buffer
concept for enhancing the expressiveness of renditions [8].
In their paper, the authors describe how to extract
additional data during the rendering process, store it in
what they call G-buffers, and use it for computing NPR
primitives. These primitives (silhouettes and feature lines)
are then composited into the image to extend the
comprehensibility of the shown objects. It is important to
note that G-buffers use the same underlying topology as
the rendition they were generated for, i.e., the x� y pixel
matrix of the image. Thus, G-buffers form a stack of
images, each recording a different property.

Although Saito and Takahashi used their G-buffers to
store extracted linear features from 3D data, this happened
entirely in image-space. Besides this pixel-based approach
there are also two different approaches to extract edges and
render strokes—hybrid methods and techniques in object-
space [3]. In particular, the latter group is of interest for
this paper as it offers a greater freedom in terms of line
parametrization and further processing than hybrid and
image-based techniques. In the area of object-space stroke
generation, the concept of using line stylization pipelines
has emerged. The pipeline’s elements are used to extract
significant edges from a model, concatenate them to
strokes, stylize these strokes according to certain properties
and parameters, and finally render them [6,7,12]. In
particular, Grabli et al. discuss the process of line
stylization in a pipeline in greater detail. Their main
contribution to NPR line drawing is the separation of lines
or edges from the attributes which guide the line
stylization. This separation is achieved by collecting as
much information on the scene as possible. The gathered
data is categorized into 3D scene information (3D
coordinates, normals, object IDs, etc.), auxiliary maps
(local average depth, item buffer, etc.), the view map (a
planar graph which is received by projecting the extracted
feature edges into the view plane), and the current drawing
(local stroke density). This data is then used to create style
sheets for stylizing the lines extracted from a 3D model.
These can now be arranged to model different NPR-
pipelines. The individual style sheet modules operate on the
2D view map’s edges and consist of selecting, chaining,
splitting, and assigning attribute operation. Furthermore,
several of these modules can be used simultaneously. In a
final step, each resulting image layer is combined into a
single image leading to a huge amount of different styles
which can be used in one image. However, in contrast to
our technique, they are bound to a sequential pipeline in a
greater extent. Moreover, the information acquiring step is
fairly complex and could be handled in an easier way.

3. G-strokes

In order to support the creative process of generating
expressive line renditions, a wide variety of stylization
elements and stroke properties need to be available to the
artist. The realization of previous stylization pipelines
hinders the creation of truly powerful line rendering
systems. In the following, we present the concept of
G-strokes that not only can overcome these limitations
but also reduce both the amount of necessary coding for
each new stylization element and the complexity of the
resulting stroke pipeline.

3.1. A new stroke concept

A common way to represent an edge is to store the edge’s
segments as an indexed list with pointers to the actual
coordinates of the edge’s vertices, each segment being

ARTICLE IN PRESS
T. Isenberg, A. Brennecke / Computers & Graphics 30 (2006) 754–766 755



Download	English	Version:

https://daneshyari.com/en/article/442777

Download	Persian	Version:

https://daneshyari.com/article/442777

Daneshyari.com

https://daneshyari.com/en/article/442777
https://daneshyari.com/article/442777
https://daneshyari.com/

