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Variational surface design under normal field guidance
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Abstract

This paper proposes a novel method for shape design of a Bézier surface with given boundary curves. The surface is defined as the minimizer
of an extended membrane functional or an extended thin plate functional under the guidance of a specified normal field together with an initial
prescribed surface. For given boundary curves and the guiding normal field, the free coefficients of a Bézier surface are obtained by solving a
linear system. Unlike previous PDE based surface modeling techniques which construct surfaces just from boundaries, our proposed method can
be used to generate smooth and fair surfaces that even follow a specified normal field. Several interesting examples are given to demonstrate the
applications of the proposed method in geometric modeling.
& 2015 Society of CAD/CAM Engineers. Production and hosting by Elsevier. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Functional optimization technique is a general approach to
fair surface design [1–4]. Moreton and Séquin [1] proposed a
method for the creation of smoothly connected surfaces of any
genus or topological type. Welch and Witkin [2] achieved fair
surfaces by functional optimization of the surface shape. The
users were able to control the surface shape by attaching points
and curves to the surface. Fair surface design can also be
formulated as solving partial differential equations (PDEs)
subject to geometric or physical constraints [5–12]. In litera-
ture [6], a system was proposed for global and local deforma-
tions of PDE-based surface models subject to physical
constraints. At the same time, the system also computed the
B-spline finite element approximation of the PDE surface and
allowed users to interactively manipulate the surface.

The tensor product Bézier surfaces, B-spline surfaces and
NURBS surfaces are widely used in surface shape design. By
employing the technique of control points, these surfaces can
be designed interactively. Generally, the parametric surfaces

can be deformed by searching the control points and weights
subject to the geometric constraints [13–19]. Hu et al. [20]
proposed two methods for modifying the shape of NURBS
surfaces with geometric constraints, such as points, normal
vectors at selected points, and pre-constructed curves. Both
methods are dedicated to changing the control points and
weights of an initial surface. Sauvage et al. [21] addressed the
deformation of B-spline surfaces while constraining the
volume enclosed by the surface. Pusch et al. [22] proposed
an algorithm for locally deforming either a parametric surface
or a hierarchical subdivision surface to match a set of posi-
tional and energy minimizing constraints.
Among all functionals for fair surface design, Dirichlet

functional [23] and bi-harmonic functional [24] are popular for
generating smooth and fair surfaces that interpolate given
boundary curves. However, surfaces generated by these
two functionals have few degrees of freedoms for shape
adjustment, and they cannot represent even cylinder or cone
like surfaces which are widely used in CAD. The geometric
PDE method can generate typical surfaces for shape modeling
[25] and surface restoration [26]. But, these equations are hard
to have analytic solutions due to high nonlinearity. For
applications like transition surface design or hole filling, the
interpolating surfaces may have salient features which should
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be controlled by additional parameters. This motivates us
developing new functionals for fair surface design that have
enough degrees of freedoms for shape adjustment as well as
explicit solutions.

We propose to design Bézier surfaces with given borders by
minimizing an extended membrane energy or an extended thin
plate energy. Besides being as fair as possible, the resulting
surface also fits to a prescribed normal vector field and an
initial prescribed surface. Two shape parameters λ and γ are
introduced to balance the effects of normal field and the initial
surface. If λ and γ are chosen zero, the energy functional will
degenerate to the Dirichlet functional or the bi-harmonic
functional. The algorithm is easy to implement and the free
control points of the surface are obtained by solving a linear
system. For the convenience of adjusting the specified normal
vector field, we can discretize the functional on a grid of
parametric points and specify a discrete normal vector field.
We have applied the proposed method for surface editing, hole
filling and transition surface modeling.

The paper is organized as follows. In Section 2, an extended
membrane energy functional and an extended thin plate energy
functional are introduced. In Section 3, we propose explicit
formulae for variational surface design under the guidance of
normal vector field with given borders. Variational surface
design under the guidance of discrete normal field is given in
Section 4. In Section 5 we present several interesting exam-
ples. Section 6 concludes the paper.

2. Extended energy functionals for shape optimization

In this section, we propose two new energy functionals for
Bézier surface shape design. These functionals are defined on
the space of Bézier patches R : Ω-R3. Assuming Rðu; vÞ ¼Pn
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scribed normal function and Sðu; vÞ ¼ Pn
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j ðvÞP̂ij is the given Bézier surface. We would like to find a

fair surface Rðu; vÞ that lies close to the given surface Sðu; vÞ
and fits well to the known normal field Nðu; vÞ.

First, we extend the membrane energy functional by allow-
ing the surface to follow the shape of a given normal field and
an initial surface. The extended membrane energy functional is
given by

E1 Rð Þ ¼ 1
2
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where Ru;Rv are the partial derivatives of R, and λðZ0Þ,
γðZ0Þ are the coefficients chosen by users. If λ40, the
resulting surface fits to the prescribed normals. If γ40,
the resulting surface follows the shape of the initial given
surface also. The corresponding Euler–Lagrange equation of
the functional is

0¼ ðIþλNNtÞðRuuþRvvÞ
þλ½ðNNt

uþNuNtÞRuþðNNt
vþNvNtÞRv�

�γðR�SÞ;

where I is the identity matrix and t represents the transpose of
a column vector. If both the coefficients λ and γ vanish, the
functional reduces to the classical Dirichlet functional, and the
corresponding Euler–Lagrange equation becomes the classical
Laplacian equation.
Second, we extend the thin plate functional by using the

prescribed normal field. In addition to interpolating the given
boundary curves, the thin plate energy can be used to optimize
surfaces that interpolate given tangent planes at the boundaries.
In a similar fashion to the functional (1), the extended thin
plate functional is defined as
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where Ruu;Ruv;Rvv are the second derivatives of R. The
corresponding Euler–Lagrange equation for this functional is

0¼Ruuuuþ2RuuvvþRvvvv�λNNtRuu�λNNtRvv

�λ½ðNNt
uþNuNtÞRuþðNNt

vþNvNtÞRv�þγðR�SÞ:
When the coefficients λ, γ vanish, the functional degenerates to
the thin plate functional. The corresponding Euler–Lagrange
equation becomes the biharmonic equation.

3. Variational surface design with given borders

Though the minimizer of functional in Eq. (1) or in Eq. (2)
can be characterized by the Euler–Lagrange equation, practical
applications such as filling holes or designing transition sur-
faces usually need to solve fair surfaces with known bound-
aries. In the following we minimize the functional (1) or (2) by
assuming the boundary curves or the boundary control points
of a Bézier surface are already given. As the integrals in
Eq. (1) or (2) can be computed explicitly, the free control
points of the Bézier surface will be finally obtained by solving
a linear system.

3.1. Surface modeling by minimizing the extended membrane
energy

When we model a surface by minimizing the extended
membrane energy functional with the given boundary curves,
the minimization problem can be converted to solving the
following system of equations.

∂E1

∂Pij
¼ 0 i¼ 1;…; n�1; j¼ 1;…;m�1ð Þ:

Since the energy functional E1ðRÞ is a quadratic functional in
terms of the unknown control points, the mentioned equations
form a linear system.
Let
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