

Available online at www.sciencedirect.com

Applied Catalysis A: General 297 (2006) 189-197

www.elsevier.com/locate/apcata

Reduction of H_xMoO_3 with different amounts of hydrogen to high surface area molybdenum oxides

Hirotoshi Sakagami, Yoko Asano, Tomoya Ohno, Nobuo Takahashi, Hidenobu Itoh, Takeshi Matsuda*

Department of Materials Science, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090 8507, Japan

Received 6 July 2005; received in revised form 1 September 2005; accepted 6 September 2005

Available online 17 October 2005

Abstract

The effect of the amounts of hydrogen in molybdenum bronze on the surface area of its reduction product was studied. H₂ reduction of molybdenum bronze induced an increase in the surface area. Molybdenum bronze with the larger amount of hydrogen exhibited the higher surface area after H₂ reduction. The reduction process varied with the amount of hydrogen in molybdenum bronze. The formation of MoO₂ was suppressed and that of molybdenum oxyhydride, MoO_xH_y, was promoted by an increase in the amount of hydrogen. Molybdenum bronze decomposed to Mo₄O₁₁ and MoO₂ on thermal treatment at 400 °C in a flow of N₂. The surface area of the thermally treated bronze changed very little with H₂ reduction. We conclude from these results that the reduction of molybdenum bronze to MoO_xH_y, of which the formation was dominated by the amount of hydrogen in molybdenum bronze, involved an enlargement in the surface area. (C) 2005 Elsevier B.V. All rights reserved.

Keywords: Hydrogen molybdenum bronze; H2 reduction; Surface area; Molybdenum oxides

1. Introduction

Inorganic materials with high specific surface area have a great utility as catalysts and adsorbents. Synthesis and characteristics of Mo- and W-based materials with high specific surface area have been reported. Volpe and Boudart [1] have reported that temperature-programmed reaction between MoO₃ or WO₃ with NH₃ provided a new way to prepare Mo₂N and W_2N powders with surface areas as high as 220 and 91 m²/ g, respectively. The Mo₂N and W₂N were transformed to MoC_x and WC_x with surface areas of 185 and 55 m²/g, respectively, by temperature-programmed carburization in a mixture of CH₄ and H₂ [2,3]. Temperature-programmed carburization of MoO₃ in a CH_4 - H_2 mixture also led to the formation of MoC_x with high surface area [4]. Ledoux and co-workers have shown that the reaction of MoO₃ with a mixture of H₂ and hydrocarbon at $350 \,^{\circ}\text{C}$ yielded molybdenum oxycarbide, MoO_xC_y, with a surface area of about $150 \text{ m}^2/\text{g}$ [5–7].

We showed in previous papers [8,9] that H_2 reduction of MoO_3 at 350 °C was accompanied by a significant increase in

the surface area. The reduced MoO_3 exhibited a surface area of 180 m²/g when its average valence of Mo was in the range of 2.5–3.5. The enlargement of surface area was found to result from the formation of pores with diameters of 0.6–3.0 nm. MoO_3 became an active and selective catalyst for heptane isomerization after H₂ reduction at 350 °C [10,11]. Furthermore, the reduced MoO₃ catalyzed the dehydrogenation and the dehydration of propan-2-ol simultaneously [11,12]. We have suggested from these results that MoO_3 reduced at 350 °C is a porous transition metal oxide with the bifunctional property.

The physical and catalytic properties of H₂-reduced MoO₃ were strongly dependent on reduction temperature [13,14]. When the samples reduced at different temperatures were compared at a certain average valence of Mo, MoO₃ reduced at 350 °C had much higher surface area than MoO₃ reduced at 400 °C and above. Similar results were obtained in heptane isomerization. Since the formation of hydrogen molybdenum bronze, H_xMoO₃, was observed during reduction at 350 °C, but not at 400 °C, we have suggested that the surface area and the isomerization activity can be enlarged when reduction involves the formation of H_xMoO₃. Wehrer et al. reported the strong influence of reduction conditions of MoO₃ on its isomerization be the precursor of the active phase for alkane isomerization

^{*} Corresponding author. Tel.: +81 157 26 9448; fax: +81 157 26 4973. *E-mail address:* matsutk@mail.kitami-it.ac.jp (T. Matsuda).

⁰⁹²⁶⁻⁸⁶⁰X/\$ – see front matter © 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.apcata.2005.09.005

[15–17]. The important role of H_xMoO_3 was also observed in preparation of molybdenum oxycarbide; MoO_xC_y was formed as a pure phase without the presence of MoO_2 by starting from H_xMoO_3 , while carburization of MoO_3 yielded a mixture of MoO_xC_y and MoO_2 [18].

The dependency of the surface area on reduction temperature was not observed when temperature-programmed reduction of MoO₃ was conducted in the presence of noble metal, such as Pt and Pd [19–21]. It is well known that MoO₃ with a noble metal absorbs a large amount of atomic hydrogen at room temperature without an equivalent amount of water being generated [22–24]. This phenomenon is understood as follows: H₂ molecules are dissociatively adsorbed on noble metal, and the dissociated species migrate onto MoO₃, and then insert into the MoO₃ lattice, leading to the formation of H_xMoO_3 . When reduction of Pt/MoO₃ was performed at 400 °C after heating in a stream of N₂, the reduction proceeded without the formation of H_xMoO_3 . In this case, the surface area did not change at all [25]. We reported in previous papers [26,27] that the effects of H_2 reduction on the surface area of H_xMoO_3 that were prepared from a mixture of MoO₃, Zn, and HCl solution was similar to those on Pt/MoO_3 , but differed from those on MoO_3 . We have suggested from these results that the enlargement of surface area can originate from reduction of H_xMoO_3 . However, the roles of H_xMoO₃ in the enlargement of surface area are still under investigation. The main purpose of this paper is to describe the effect of the amounts of hydrogen in H_xMoO_3 on the surface area of its reduction product.

2. Experimental

2.1. Materials

H₂, N₂, and Ar were purified by passage through a molecular sieve and an Mn/SiO₂ oxygen trap. H₂MoO₄ of purity 98% was purchased from Kanto Chemical Co. Inc. The MoO₃ used in this study was obtained by calcination of H2MoO4 at 400 °C for 3 h. Hydrogen molybdenum bronze, H_xMoO₃, was prepared at room temperature according to the method described by Glemser and Lutz [28]. MoO₃ powder (10 g) was mixed with chips of Zn, and then an aqueous solution of 4 M HCl was added. H_xMoO₃ with the different amounts of hydrogen was obtained by changing the amounts of Zn and HCl solution, namely the molar ratio of MoO₃ and H₂ that was evolved from the reaction of Zn and HCl. H_xMoO₃ samples were prepared at the H₂/Mo ratios of 0.5, 1.0, and 2.0. The reaction mixture was filtered and washed many times in water to eliminate ZnCl₂ and HCl. After filtration, the product was dried in vacuo, and was then stored under Ar atmosphere.

2.2. Reduction and characterization methods

A sample weighing 0.1 g was heated to 200–500 °C at a rate of 5 °C/min in a stream of H₂ (60 mL/min), and was kept for 12 h. For comparison, H₂ reduction was conducted at 400 °C for a desired period, typically for 12 h, on H_xMoO₃ that was treated in a flow of N₂ at 200–400 °C for 2 h prior to reduction.

After reduction and evacuation at room temperature, the adsorption isotherm of N_2 was measured at -196 °C using a conventional high vacuum static system to determine the surface area. After the adsorption measurement, the sample was heated in vacuo to 500 °C, and then was oxidized by introducing prescribed amounts of O_2 . The average valence of Mo was calculated from the amounts of O_2 consumed in the reoxidation to MoO₃. The pore-size distribution and the pore volume were determined with an automatic gas adsorption apparatus (Sorpmatic 1990, Carlo Erba) using the Horvath–Kawazoe method.

X-ray diffraction analyses were carried out on a Rigaku Model Rint 1200 diffractometer with the Ni-filtered Cu K α radiation. H₂-reduced samples for XRD measurements were obtained as follows: a sample was subjected to H₂ reduction at temperature in the range of 200–500 °C for a desired period, followed by flowing N₂ for 0.5 h at the same temperature. After cooling to room temperature under a flow of N₂, the reduced sample was transferred to a glove box without exposure to air, and was dispersed in a solution of heptane to avoid any bulk oxidation.

Temperature-programmed reduction (TPR) was conducted to study the reduction process of H_xMoO_3 . A sample weighing 0.4 g was heated from 25 to 900 °C at a rate of 5 °C/min in a stream of 20% H₂–Ar (20 mL/min). The concentrations of H₂ and H₂O were monitored with TCD gas chromatography using a Porapak N separation column at 140 °C. Temperatureprogrammed decomposition (TPD) was carried out using Ar as a carrier gas to determine the amounts of hydrogen in H_xMoO₃ samples.

3. Results and discussion

3.1. Characteristics of $H_x MoO_3$

Fig. 1 demonstrates the XRD patterns of H_xMoO_3 samples prepared using Zn metal and an aqueous solution of HCl. The H_xMoO_3 prepared at the H₂/Mo molar ratio of 0.5 provided no diffraction lines due to the MoO₃ phase; the lines corresponding to the H_{0.34}MoO₃ phase were observed at $2\theta = 12.6^{\circ}$, 23.7°, 27.0°, 29.8°, 33.8°, and 38.5°, and those to the H_{0.93}MoO₃ phase appeared at $2\theta = 12.2^{\circ}$, 24.2°, 25.5°, 37.2°, and 39.1°. The mixture of the H_{0.34}MoO₃, the H_{0.93}MoO₃, and the H_{1.68}MoO₃ phases was obtained at the H₂/Mo ratio of 1.0. The H_xMoO₃ prepared at the H₂/Mo ratio of 2.0 gave no diffraction lines due to the H_{0.34}MoO₃ and H_{0.93}MoO₃ phases; the lines were observed at $2\theta = 12.7^{\circ}$, 24.4° and 38.7°, which were assigned to $d(2 \ 0 \ 0)$, $d(1 \ 1 \ 0)$, and $d(6 \ 0 \ 0)$ diffraction of the H_{1.68}MoO₃ phase.

Temperature-programmed decomposition (TPD) and reoxidation of H_xMoO_3 were performed to determine the *x* value of H_xMoO_3 . Results are summarized in Table 1. TPD of H_xMoO_3 in an Ar flow yielded H_2O only. The amounts of H_2O evolved from H_xMoO_3 prepared at the H_2/Mo ratios of 0.5, 1.0, and 2.0 in temperatures of 25–500 °C were 5.63×10^{-2} , 6.88×10^{-2} , and 9.34×10^{-2} g/g H_xMoO_3 , respectively, from which the *x* values of the H_xMoO_3 samples were determined to be 0.9, 1.1, Download English Version:

https://daneshyari.com/en/article/44285

Download Persian Version:

https://daneshyari.com/article/44285

Daneshyari.com