EI SEVIER

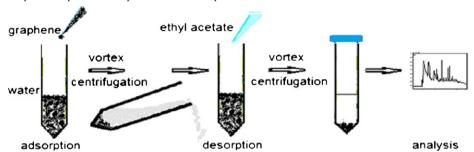
Contents lists available at SciVerse ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Graphene-dispersive solid-phase extraction of phthalate acid esters from environmental water

Xiaoli Wu ^a, Huijie Hong ^{a,b}, Xiaotong Liu ^a, Wenbi Guan ^a, Lixuan Meng ^a, Yong Ye ^b, Yongqiang Ma ^{a,*}


- ^a College of Science, China Agricultural University, Beijing 100193, PR China
- b Phosphorus Chemical Engineering Research Center of Henan Province, Department of Chemistry, Zhengzhou University, Zhengzhou 450052, PR China

HIGHLIGHTS

- Graphene-dispersive solid-phase extraction was firstly used in sample preparation.
- ► The amount of graphene used was only 3 mL (1.5 mg/mL) for enrichment of 15 PAEs.
- ► The method was applied for 9 river and 2 sea water samples from 7 areas in China.

GRAPHICAL ABSTRACT

Graphene-dispersive solid-phase extraction of phthalate acid esters from environmental water.

ARTICLE INFO

Article history:
Received 21 August 2012
Received in revised form 9 November 2012
Accepted 15 November 2012
Available online 27 December 2012

Keywords: Graphene Phthalate acid esters Dispersive solid-phase extraction Environmental water

ABSTRACT

Graphene is a novel carbon nanomaterial with an ultra-high specific surface area. In this paper, we explored graphene as adsorbent for efficient enrichment of 15 phthalate acid esters (PAEs) under different water matrixes (ultrapure water, river and sea). A simple and inexpensive method of dispersive solid-phase extraction (DSPE) combined with gas chromatography—mass spectrometry (GC–MS) was used and acceptable results were provided for most PAEs with overall average recoveries between 71 and 117%. The extraction conditions such as the amount of graphene, the desorption solvent, adsorption time, desorption time and the solution pH were optimized. Finally, the method was applied for the determination of PAEs in environmental water samples including 9 rivers and 2 seas from 7 areas in China.

Crown Copyright © 2012 Published by Elsevier B.V. All rights reserved.

1. Introduction

Phthalate acid esters (PAEs) are widely used in industrial plastics, polyvinyl chloride (PVC) products and personal care products. As PAEs are not chemically bound to plastic, they can readily leach, migrate or evaporate into various environmental matrices. These pollutants are refractory to the environmental microorganisms. Their accumulation in natural waters causes wide distribution within aqueous systems like rivers, lakes and ground waters, as well as a noticeable influence on the ecological environment (Daiem et al., 2012). Being suspected to

have carcinogenic and estrogenic properties (Harris et al., 1997; Heudorf et al., 2007), the determination of the PAEs has attracted considerable attention.

The most widely used analysis methods for sample preparation of PAEs include liquid-liquid extraction (LLE) (Mori, 1976; Holadová and Hajslová, 1995; Kambia et al., 2001) and solid phase extraction (SPE) (Jobling et al., 1995; Jara et al., 2000). Recently some new techniques have been developed for the preconcentration of phthalate esters such as solid-phase microextraction (SPME) (Peñalver et al., 2000; Prokůpková et al., 2002; Saito et al., 2002), ultrasonic extraction (USE) (Ma et al., 2003), liquid-phase micro extraction (LPME) (Batlle and Nerín, 2004; Psillakis and Kalogerakis, 2003), microwave-assisted extraction (MAE) (Bartolomé et al., 2005), and accelerated solvent-based

^{*} Corresponding author. Tel.: +86 10 62733219; fax: +86 10 62733620. E-mail address: mayongqiang@cau.edu.cn (Y. Ma).

Table 1The retention time, qualitative ions and quantitative ions for the GC/MS analysis of 15 PAEs.

Analyte	Abbreviation	Retention time (min)	Qualitative ion	Quantitative ion
Dimethyl phthalate	DMP	5.57	77, 135, 194	163
Diethyl phthalate	DEP	6.42	121, 177, 222	149
Diisobutyl phthalate	DIBP	8.06	167, 205, 223	149
Dibutyl phthalate	DBP	8.75	121, 205, 223	149
Bis(2-methoxyethyl) phthalate	DMEP	9.08	149, 193, 251	59
Bis(4-methyl-2-pentyl) phthalate	BMPP	9.73	121, 167, 251	149
Bis(2-ethoxyethyl) phthalate	DEEP	10.06	45, 121, 149	72
Dipentyl phthalate	DPP	10.39	167, 219, 237	149
Di-n-hexyl phthalate	DHXP	12.40	76, 104, 251	149
Benyl butyl phthalate	BBP	12.54	91, 206, 238	149
Bis(2-n-butoxyethyl) phthalate	DBEP	13.93	57,193, 249	149
Dicyclohexyl phthalate	DCHP	14.53	83, 167, 269	149
Bis(2-ethylhexyl) phthalate	DEHP	14.79	113, 167, 279	149
Di-n-octyl phthalate	DNOP	17.13	179, 261, 279	149
Dinonyl phthalate	DNP	19.60	57, 71, 293	149
Triphenyl phosphate	TPP	13.14	170, 215, 325	326

extraction (Reid et al., 2009). The traditional method of LLE is time consuming and requires large amounts of organic solvents. SPE is expensive relatively. Compared to LLE and SPE, these new extraction methods are simple and time saving.

More recently other methods based on the application of carbon materials such as activated carbon (Özer and Gücer, 2011), multiwalled carbon nanotubes (MWNTs) (Cai et al., 2003) and magnetic

MWCNTs (Luo et al., 2012) were also developed. The magnetic solid-phase extraction (MSPE) coupling with gas chromatography/mass spectrometry (GC/MS) (Luo et al., 2012) showed limits of detection (LOD) of 16 PAEs ranged from 0.003 to 0.06 ng/L, which was more sensitive compared to other methods.

These carbon materials showed great potential for the enrichment of PAEs. Graphene is a new type of carbon nanomaterial with one

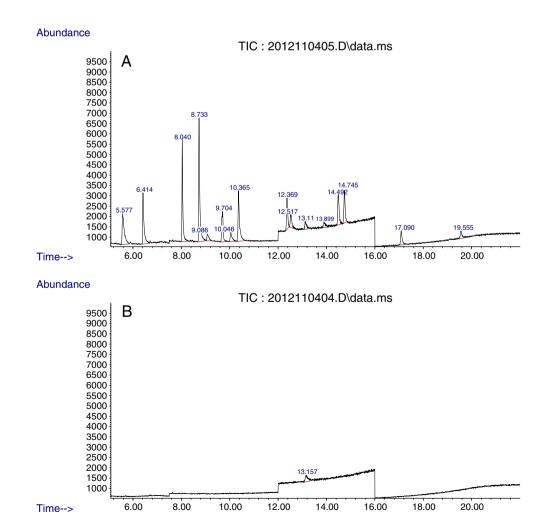


Fig. 1. The total ion chromatograms of 15 PAEs and TPP obtained by GC-MS analysis. A) The total ion chromatograms of 15 PAEs and TPP. B) The solvent blank with TPP.

Download English Version:

https://daneshyari.com/en/article/4429059

Download Persian Version:

https://daneshyari.com/article/4429059

<u>Daneshyari.com</u>