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Abstract

We use the topological sub-structural molecular design (TOPS-MODE) approach to formulate structural alert rules for chromosome aberration

(CA) of organic compounds. First, a classification model was developed to group chemicals as active/inactive respect to CA. A procedure for

extracting structural information from orthogonalized TOPS-MODE descriptors was then implemented. The contributions of bonds to CA in all the

molecules studied were then generated using the orthogonalized classification model. Using this information we propose 22 structural alert rules

which are ready to be implemented in expert systems for the automatic prediction of CA. They include, among others, structural alerts for N-nitroso

compounds (ureas, urethanes, guanidines, triazines), nitro compounds (aromatic and heteroaromatic), alkyl esters or phosphoric acids, alkyl

methanesulfonates, sulphonic acids and sulphonamides, epoxides, aromatic amines, azaphenanthrene hydrocarbons, etc. The chemico-biological

analysis of some of the structural alerts found is also carried out showing the potential of TOPS-MODE as a knowledge generator.
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1. Introduction

In QSAR analysis a quantitative model is used to predict the

biological response of a chemical based on a series of molecular

descriptors or physicochemical properties [1]. However, the

structural information contained in such descriptors or

properties is encrypted [2] in a way that does not allow the

extraction of structural rules to form a knowledge base similar

to that provided by human expertise [3]. In the case of

toxicological assessment of chemicals these knowledge bases

are the heart of expert systems, such as DEREK [4] and

TOPKAT [5], used to evaluate the toxicological profile of

chemicals [6]. One of these toxicological endpoints which is of

relevant importance is the chromosome aberration or clasto-

genicity produced by chemicals. Chromosome aberrations

(CA) are DNA changes generated by different repair

mechanisms of DNA double strand breaks, which are

microscopically visible [7]. They are consequences of human

exposure to ionising radiation or to mutagenic chemicals [8–

11]. The frequencies of CA in peripheral lymphocytes show a

positive correlation with the later onset of cancer in humans [7].

The necessity for the automatic generation of structural

alerts for predicting CA and other toxicological endpoints is

evident. On one hand, classical QSARs permit the classification

of chemicals as clastogenic/nonclastogenic but their informa-

tion cannot be easily incorporated on the existing expert

systems due to the cryptic nature of the variables included in

such models [2]. On the other hand, the traditional method for

extracting knowledge from human expertise requires a great

amount of (available) information about a set of chemicals

permitting the expert their generalization. However, the rate of

producing new chemical entities overtakes the rate of their

toxicological profile evaluation. Thus a method that permits to

extract knowledge from the minimum information available

about a series of chemicals is necessary to keep expert systems

updated. In this sense, an expert system can be considered as

knowledge archive where a collection of knowledge is

expressed using some formal representation language. An

automatic knowledge generator is a methodology that will

provide new structural alerts to the knowledge archive in a

cyclic way keeping it updated. In previous works [12,13] we

have shown that the so-called topological sub-structural

molecular design (TOPS-MODE) approach [14–19] represents

a useful platform for the automatic generation of toxicological

structural alerts. In these works a general strategy for
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knowledge flow concerning skin sensitization based on the

combined use of TOPS-MODE and DEREK expert system was

proposed [12,13].

The main purpose of the current work is to generate

structural alert rules that permit the identification of CA in

chemical compounds using information coded in their

molecular structure. Thus, we develop a classification model

using the TOPS-MODE approach, which allows to calculate the

contribution of each part of a molecule to the activity under

study. Using this information we identify structural regions

responsible for the clastogenic activity of chemicals and

transform this information into structural alert rules which are

ready to be implemented in expert systems such as DEREK.

2. Data set

A data set of 383 organic compounds compiled by Serra

et al. was used for the purposes of the current study [20]. These

compounds were selected among those reported on the

Compilation of Chromosomal Mutation Test Data containing

tests carried out by the National Drug and Food safety

Laboratory and the First Laboratory of the mutational Genetics

Department of the Safety and Biotesting Research Center in

Japan [21]. These compounds were tested at two different times

of exposure, mainly 24 and 48 h, in cultured Chinese hamster

lung cells. After exposition, cells were processed by standard

methods and chromosomal aberrations were identified.

Compounds were classified as positive if there were 10% or

greater aberrant cells and negative if there were 5% or less

aberrant cells. Compounds classified as ‘‘equivocal’’ due to

their percentage of aberrant cells (5–10% aberrant cells) were

not included in this study as well as they were not considered in

Serra et al.’s work. From this original data set three compounds

could not be included in the current study as they have

macromolecular structures, such as polymeric one (compounds

161, 185, 267 in Serra et al.’s work [20]). Three compounds in

the original data set were salts of other compounds in the data

set. For instance, compound 40 (in Serra et al. ’s paper [20]) is

aniline–HCl and compound 141 is aniline. Compound 11 is the

sodium salt of the L-glutamic acid and compound 200 is L-

glutamic acid. Finally, compound 324 is the salt of 115. In all

cases salts were excluded from our data set. There are other five

pairs of compounds which were geometric isomers distin-

guished neither by our approach nor by descriptors used by

Serra et al. [20]. They are: 163/355, 42/136, 90/146, 348/361

and 166/175. In all cases one of the compounds in each pair was

eliminated from our data set. Consequently, our data set is

formed by 372 organic compounds including known carcino-

gens, drugs, food additives, agrochemicals, cosmetic materials,

medicinal products, and household materials.

This data set was divided into two subsets, one containing

216 compounds (100 clastogenics and 116 nonclastogenic) was

used as a training set for developing the classification model.

The other formed by 156 compounds (11 clastogenic and 145

nonclastogenic) was used as a prediction set. Our main

objective is to extract as much structural information as

possible from this data set in order to formulate structural alerts

for clastogenicity. Consequently, we keep the minimum

number of clastogenic compounds out of the training set. In

fact, we selected only those compounds used by Serra et al. [20]

as the prediction set for the k-nearest neighbour model, i.e., we

do not use any cross-validation set. In that work, however, the

number of nonclastogenic compounds in the training sets is

very much higher than the number of clastogenic ones. For

instance, for the k-NN model development they used 245

nonclastogenic compounds and 101 clastogenic compounds

and for SVM model development the training set consisted on

218 nonclastogenic and only 90 clastogenic compounds. Here

we preferred to have a more compensated training set having

approximately the same number of clastogenic and nonclasto-

genic compounds. Consequently, we selected at random several

nonclastogenic compounds originally in the training set to be in

the prediction set. This produced a training set having 116

nonclastogenic and 100 clastogenic compounds and the

prediction set was finally conformed by these compounds plus

those originally in the prediction set [20].

3. Methodology

3.1. The TOPS-MODE approach

In the last 10 years we have developed an approach to

QSAR/QSPR based on the use of spectral moments of the

bond matrix as molecular descriptors. It is known as TOPS-

MODE approach, which is the acronym of topological sub-

structural molecular descriptors/design [14–19]. TOPS-

MODE approach is based on the calculation of spectral

moments of molecular bond matrices appropriately weighted

to account for hydrophobic, electronic and steric molecular

features. Spectral moments are the trace of the kth power of a

matrix, i.e., the sum of all the main diagonal entries of such

matrices [14–16].

A bond matrix is a square symmetric matrix in which non-

diagonal entries are ones or zeroes if the corresponding bonds

have a common atom or not, respectively [22]. These matrices

represent the molecular skeleton without taking into account

hydrogen atoms. Bonds weights are placed as diagonal entries

of such matrices and represent quantitative contributions to

different physicochemical properties. Among bond weights

currently in use in our approach we have standard bond distance

(SD), standard bond dipole moments (DM), hydrophobicity (H)

[23], polar surface area (PS) [24], polarizability (Pol) [25],

molar refractivity (MR) [25], van der Waals radii (vdW) [26],

and Gasteiger–Marsilli charges (Ch) [27].

The starting point for our approach is to calculate TOPS-

MODE descriptors of the different types, e.g., H, PS, Pol, MR,

vdW, and Ch, for the series of molecules under study. Then, we

develop a quantitative model describing the property under

study in term of the spectral moments. In general this model can

be of the following form:

P ¼ b0 þ
XL

j¼1

b jm j (1)
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