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a b s t r a c t

Mass-spring models (MSM) are frequently used to model deformable objects for computer

graphics applications due to their simplicity and computational efficiency. However, the

model parameters are not related to the constitutive laws of elastic material in an obvious

way. The MSM parameters computation from a model based on continuum mechanics is a

possibility to address this problem. Therefore, in this paper we propose a new method to de-

rive MSM parameters using a data-driven strategy with a new objective function based on

the model acceleration so that the MSM and the reference model behave similarly. The pro-

posed methodology does not depend on reference model, mesh topology or static equilibrium

configuration. We validate the methodology for deriving MSM systems using finite element

method (FEM) and MSM itself as reference models. The obtained results are compared with

related works. We also discuss its robustness against different discretizations and material

properties.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In the last decades, a wide variety of physically based

models has been developed by the computer graphics com-

munity to address the challenge of simulating natural ele-

ments and deformable materials. For the latter, constitutive

laws are used for the computation of the symmetric inter-

nal stress tensor and a conservation law gives the final par-

tial differential equation (PDE) that governs the dynamics

of the material [1,2]. Continuous systems have infinite de-

grees of freedom which make its description difficult for both

the geometric and dynamic aspects. In mathematical terms,

we are dealing with infinite basis functions, maybe uncount-

able. One possibility to simplify the problem is to consider

finite dimensional representation with enough flexibility in
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order to represent the solution with the desired precision. In

the context of mechanical systems the finite element method

(FEM) is the traditional way to perform this task. When sim-

ulating a deformable body, the 3D/2D object’s geometry is

usually represented by mesh based methods that offer the

support for FEM-based techniques [3].

Other possibility for elastic objects simulation is to ap-

ply discrete models, based on mass-spring systems which are

known, among other nomenclatures, as mass-spring mod-

els (MSM). In this case, the object’s geometry is represented

by a mesh and its nodes are treated like mass points while

each edge acts like a spring connecting two adjacent nodes.

MSM are simple to implement and can be faster than the

continuous ones, and so, more suitable for real time appli-

cations [4]. Therefore, MSM techniques have been used to

model deformable objects [2], for woven cloth simulation

simulation [4] and soft organic tissues, like muscles, face or

abdomen in virtual surgery applications [5–9].

However, the main limitation of the MSM is the difficulty

of designing them to represent the mechanical behavior of
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deformable bodies with enough accuracy [10]. The relation

between mass-spring models and the continuum elasticity

theory was examined in references [10–12]. The conclusion

is that methods that are based on the continuum mechan-

ics are, in general, more realistic than their discrete coun-

terparts. This happens because mechanical systems depend

on their macroscopic parameters (Young’s module and Pois-

son’s ratio) and constitutive equations that characterize the

nature of the materials that make up the bodies [3]. However,

there is no general physically based or systematic method in

the literature to determine the mesh topology or MSM pa-

rameters from known constitutive behavior [13].

When comparing mass-spring and continuous models the

following questions arise: (1) Which set of elastic material

properties can be accurately simulated by a particular spring

mesh model? (2) How to derive a mass-spring system from

continuum mechanics [14]? (3) How to specify system pa-

rameters (masses, spring constants, mesh topology) in order

to match physical requirements [11]?

The questions (1) and (3) have been more or less ad-

dressed by works that adapt MSM to describe different elas-

tic behaviors such as anisotropy, heterogeneity, nonlinearity

and also incompressibility (see [15] and references therein).

In this paper, we address the question (2) with focus on

the simulation of deformable objects in real-time for appli-

cation in virtual environments. We propose a new method

to derive mass-spring systems using a data-driven strategy

which is roughly composed by four stages: (a) simulate the

deformable object using a reference model and keep the po-

sition and velocities of the particles; (b) solve an optimiza-

tion problem based on the acceleration of the reference and

MSM models in order to compute the stiffness parameters;

(c) calculate particles masses following [16,17]; (d) compute

the damping parameters using a technique based on [18].

The obtained solution gives parameters (damping, stiff-

ness coefficients and particles masses) that allow the MSM

and the reference model behaves similarly. In order to avoid

computational complexity to compute the solution we de-

velop an algorithm to calculate an approximation of the

global solution which identifies the dominant term in the ob-

jective function and performs its minimization with respect

to the target parameters. We offer a theoretical analysis to

justify our proposal as well as some implementation details.

We validate the proposed method in the context of 2D and

3D isoparametric FEM models. The obtained results show

the efficiency of our methodology when compared with re-

lated ones. Also, we analyze the robustness of our algorithm

against different discretizations, optimization problem se-

tups and material properties.

The paper is organized as follows. Section 2 describes

the related literature. Next, in Section 3, we offer the nec-

essary background in FEM and MSM models. The proposed

approach is described on Section 4. The experimental results

are presented and discussed on Section 5. Finally, we present

in Section 6 the conclusions and future works.

2. Related works

Two categories of methods can be identified in the es-

timation of the parameters for MSM in order to guarantee

a realistic behavior: data-driven and model driven. The first

category is composed by methods that use a minimization

procedure to find the model that shows the closest behav-

ior to that of the observed (or simulated) deformable object.

To implement such solution we must specify some properties

and/or constraints for the MSM and then to seek for the other

ones by optimizing an objective function that measures the

similarity between the configurations of both the MSM and

the reference model. In these cases, it is common to use ge-

netic algorithms [19] and simulated annealing [20]. All these

methods share the same basic principle: applying random

values to different springs properties and correct the ones

that induce the greatest error in order to minimize the dis-

crepancies. These methods are well suited for solving com-

plex problems involving non-linearity and can handle with

discrete properties of the MSM configuration, like the mesh

topology [19]. The main disadvantage of the use of these

methods is the need for long computation times.

The second class is composed by those methods that try

to obtain the values of mass, stiffness and damping ratio that

reproduce a known property of the reference model through

theoretical considerations [6]. These methods seek to derive

parameters starting from some analytical knowledge of the

material or model, such as the FEM. For instance, we can seek

for a linearized MSM model that produces elements with a

stiffness matrix similar to that from linear FEM. This reason-

ing strategy based on the FEM formulation was started by

Van Gelder [11] who initially derived an MSM, with topology

given by a triangular mesh, equivalent to the FEM in the con-

text of linear elasticity. Specifically, it derives a formula for

computing the spring stiffness coefficient of an edge accord-

ing to the geometry of the triangles incident upon that edge

as well as material properties (Young’s modulus). However,

this approach did not show positive results and the conclu-

sion was that, in general, there is no possible solution that

matches FEM and MSM stiffness matrices.

Some years later, Lloyd et al. [10] demonstrated that there

is a particular case where both matrices are equal. This par-

ticular case occurs when using equilateral triangle finite el-

ement and Poisson’s ratio equal to 1/3. The approach re-

sults in explicit formulas for the MSM stiffness coefficients

for triangle, rectangle, and tetrahedron meshes. An exten-

sion of this work is found in [17] which presents formulas

to derive the dynamic MSM parameters (mass and damping)

as well. Also, it was demonstrated in [15] that Van Gelder’s

approach is restricted to null Poisson’s ratio. In this refer-

ence it is supposed a linear elastic, isotropic and homoge-

neous materials and spring coefficients are determined to

correctly simulate shear, elongation (tensile) for these me-

chanical systems. Firstly, the method computes the associ-

ated Lagrangian which depends on variables related to the

material response to the shearing/elongation stress. Next,

expressions for the Lagrangian extremum are computed to

compose a system of equations together with the measured

mechanical characteristics definitions. The idea is to build a

set of equations whose solutions give the spring coefficients

as function of the mechanical characteristics.

On the other hand, MSM models can be derived from a

continuum approach by interpreting local expressions of en-

ergy or force terms computed by finite difference or FEM for-

mulations. In this way, in [12] it is considered an isotropic

membrane represented by a triangular mesh and modeled
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