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a  b  s  t  r  a  c  t

The  problem  of  resistance  to azole  class  of  antifungals  is a  serious  cause  of concern  to  the  medical  fraternity
and thus  there  is  an urgent  need to  identify  non-azole  scaffolds  with  high  affinity  for  lanosterol  14�-
demethylase  (CYP51).  In view  of  this  we  have  attempted  to identify  novel  non-azole  CYP51  inhibitors
through  the  application  of  pharmacophore  based  virtual  screening  and  in  vitro  evaluation.  A  rigorously
validated  pharmacophore  model  comprising  of  2 hydrogen  bond  acceptor  and  2  hydrophobic  features  has
been  developed  and  used  to mine  NCI  database.  Out of 265  retrieved  hits, NSC  1215  and  1520  have  been
chosen  on  the basis  of Lipinski’s  rule of  five,  fit  and  estimated  values.  Both  the  hits  were docked  into  the
active  site  of  CYP51.  In view  of  high  fit  value  and  CDocker  score,  NSC  1215  and  1520  have  been  subjected
to  in  vitro  microbiological  assay.  The  result  reveals  that  NSC  1215  and  1520  are  active  against  Candida
albicans,  Candida  parapsilosis,  Candida  tropicalis,  and  Aspergillus  niger.  In addition  to  this  the absorption
characteristics  of both  the  hits  have  also  been  determined  using  the  rat sac  technique  and  permeation  in
order  of  NSC  1520  >  NSC  1215  has  been  observed.

©  2015 Elsevier  Inc.  All  rights  reserved.

1. Introduction

In the past two decades, the mortality and morbidity rate has
dramatically increased in patients suffering with fungal infections
like Candidosis,  Aspergillosis and Cryptococcosis [1,2]. Several anti-
fungal agents have been developed and clinically used but still cure
rate is low probably due to high resistance to current antifungals.

The role of lanosterol 14�-demethylase (CYP51) in fungal
growth makes it a relevant target for the development of drugs
active against different fungal strains. CYP51 catalyses the oxida-
tive removal of 14�-methyl group of lanosterol to give desaturated
intermediates required in ergosterol biosynthesis and this step is
considered crucial for fungal growth. [3]

The administration of azole class of CYP51 inhibitors leads to
accumulation of lanosterol and other 14-methyl sterols along with
the depletion of ergosterol [4]. Mechanistically, the nitrogen atom
at 3rd position of azole ring binds the ferric atom in heme prosthetic
group, which prevents the binding of lanosterol [5,6]. The activity
scale of azoles depends upon their binding capability to heme iron
as well as the affinity of the N-1 substituent for the protein part of
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the cytochrome [7,8]. Though azoles have played a very important
role in controlling fungal infection, but the problem of resistance
and toxicity have restricted their clinical use. Undoubtedly the sit-
uation is alarming and there is an imperative need for non-azole
CYP51 inhibitors [9].

Diverse in silico techniques such as pharmacophore modeling,
virtual screening and molecular docking has played an important
role in drug discovery [10] and it is a well known fact that many
new drugs have their origin from Computer Aided Drug Designing
(CADD) [11–13].

Prompted by the role of pharmacophore based virtual screening
in lead identification [14–16] we  have employed a sequential work
flow comprising of varied in-silico tools and wet lab experimenta-
tion to identify novel antifungal agents.

2. Materials and methods

2.1. Data set preparation

A structurally diverse data set of 28 triazole derivatives [17]
with inhibitory activity against CYP51 was  selected from the liter-
ature. Out of 28 triazole derivatives, 20 compounds were selected
in training set taking utmost care to ensure scaffold diversity and
wide range of activity values (highly active, active, moderately
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active, and inactive). Structures of all the compounds were sketched
and energy was minimized to the closest local minima. Confor-
mational analysis was carried out using the BEST conformation
module which considers the spatial arrangement of chemical fea-
tures rather than simply the arrangement of the atoms. A maximum
of 255 conformers were generated for each molecule within an
energy threshold of 20.0 kcal/mol above the global energy mini-
mum  using CHARMM force-field parameters [18]. Instead of using
lowest-energy conformer of each compound, all conformers were
used for pharmacophore model generation.

Prior to quantitative pharmacophore model development,
common-feature pharmacophore study was carried out to eluci-
date the important features which led to the identification of two
hydrogen bond acceptor (HBA) and two hydrophobic (HY) fea-
tures. All the training set compounds and their conformers along
with CYP51 inhibitory activity were used to generate quantitative
pharmacophore models employing the features identified from the
common feature pharmacophore analysis. The minimum number
for each feature was kept ‘0′ and maximum to ‘5′, allowing the
algorithm to generate an equitable model. Out of various gener-
ated pharmacophore models, best model was selected on the basis
of correlation coefficient, root-mean-square deviation (RMSD) and
cost difference [19]. The chosen pharmacophore model was rigor-
ously validated using Fischer’s randomization test, rm2 matrices
test, internal and external test set prediction.

2.2. Rm2 metrics test

In order to understand the proximity in predicted and observed
response data, the rm2 metrics (average rm2 and delta rm2) devel-
oped by ROY et al. was calculated and analyzed. The recommended
values of ‘Average rm2, and ‘Delta rm2, are >0.5 and <0.2 [20,21].

2.3. Fischer’s randomization test

The objective of this test is to check whether there is a strong cor-
relation between chemical structures and biological activity. This
test focuses on randomly assigning activity values to the molecules
in the training set. If these activity values generate pharmacophores
with analogous or better cost values and correlations than the
original model is considered to be generated by chance. Nineteen
different HypoGen runs were applied at 95% confidence level using
the same features and parameters as used during original pharma-
cophore model generation [22]. All the pharmacophore hypothesis

generated during Fischer’s randomization test were evaluated for
their statistical significance.

2.4. Güner–Henry scoring method

The goodness of the pharmacophore model depends on its
ability to differentiate between active and inactive compounds,
thus, Güner–Henry (GH) scoring method has been employed to
accurately assess the virtual screening capability of the gener-
ated pharmacophore model [23–25]. A database of 312 structurally
diverse known CYP51 inhibitors from ten publications was con-
structed and used for GH scoring [26–35]. This method is
considered as an appropriate metric, since it includes the calcu-
lation of the percent yield of actives in a database (%Y, recall), the
percent ratio of actives in the hit list (% A, precision), the enrichment
factor (E) and GH score. These parameters are computed using Eqs.
(1–4).

%A = Ha
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)
. . ..(4)

%A is the percentage of known active compounds retrieved
from the database (precision); Ha, the number of actives in the
hit list (true positives); A, the number of active compounds in the
database; %Y, the percentage of known actives in the hit list (recall);
Ht, the number of hits retrieved; D, the number of compounds in
the database; E, the enrichment of active compounds in the virtual
screening hit list in comparison to the non-filtered database and
GH is the Güner–Henry score.

2.5. Internal and external test set prediction

The utility of any pharmacophore model lies in its ability to cor-
rectly predict the activity of compounds outside the training set.
In light of this the chosen model was used to predict the activity
of structurally diverse 8 internal and 12 external tests set com-
pounds. The correlation coefficient value for each set was  observed
to ascertain the validity of model [36–38].

Fig. 1. Plot of predicted versus the corresponding actual activity (IC50) for training compounds.
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