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a  b  s  t  r  a  c  t

Anthrax  is a highly  lethal,  acute  infectious  disease  caused  by  the  rod-shaped,  Gram-positive  bacterium
Bacillus  anthracis.  The  anthrax  toxin  lethal factor  (LF),  a zinc  metalloprotease  secreted  by  the  bacilli,  plays
a key  role  in  anthrax  pathogenesis  and is  chiefly  responsible  for  anthrax-related  toxemia  and  host  death,
partly  via  inactivation  of mitogen-activated  protein  kinase  kinase  (MAPKK)  enzymes  and  consequent
disruption  of key cellular  signaling  pathways.  Antibiotics  such  as  fluoroquinolones  are capable  of  clearing
the  bacilli  but  have  no  effect  on  LF-mediated  toxemia;  LF  itself  therefore  remains  the  preferred  target  for
toxin inactivation.  However,  currently  no  LF  inhibitor  is  available  on  the  market  as  a therapeutic,  partly
due  to  the  insufficiency  of  existing  LF inhibitor  scaffolds  in  terms  of  efficacy,  selectivity,  and  toxicity.  In the
current  work,  we  present  novel  support  vector  machine  (SVM)  models  with  high  prediction  accuracy  that
are designed  to  rapidly  identify  potential  novel,  structurally  diverse  LF  inhibitor  chemical  matter  from
compound  libraries.  These  SVM  models  were  trained  and  validated  using  508  compounds  with  published
LF  biological  activity  data  and  847  inactive  compounds  deposited  in  the Pub  Chem  BioAssay  database.  One
model,  M1,  demonstrated  particularly  favorable  selectivity  toward  highly  active  compounds  by correctly
predicting  39  (95.12%)  out of 41  nanomolar-level  LF  inhibitors,  46  (93.88%)  out of  49  inactives,  and  844
(99.65%)  out of  847 Pub  Chem  inactives  in  external,  unbiased  test  sets.  These  models  are  expected  to
facilitate  the  prediction  of  LF  inhibitory  activity  for  existing  molecules,  as  well  as  identification  of  novel
potential  LF  inhibitors  from  large  datasets.

© 2015  Elsevier  Inc.  All  rights  reserved.

1. Introduction

Anthrax is an acute, often fatal infectious disease caused by
the rod-shaped, spore-forming bacterium Bacillus anthracis. Pri-
marily a zoonotic disease affecting livestock and wild animals,
anthrax has more recently emerged as a lethal bioterror agent,
with the inhalational form posing a particular threat to soci-
ety. Anthrax-related toxicity has been attributed primarily to its
plasmid-encoded, secreted exotoxin comprising the lethal fac-
tor (LF), the edema factor (EF, a calmodulin-activated adenylate
cyclase), and the protective antigen (PA) [1]. LF, a zinc-dependent
hydrolase, joins with PA to form the anthrax lethal toxin, which is
chiefly responsible for cytotoxicity and eventual host death associ-
ated with anthrax pathogenesis [2]. The protective antigen delivers
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LF into the cytoplasm of host cells, where LF cleaves and inactivates
mitogen-activated protein kinase kinases (MAPKKs), thereby inter-
fering with signaling processes that are essential for cell function
and survival, most notably involving the immune response [3–5].
Antibiotics such as fluoroquinolones are capable of eradicating the
bacilli, however, host death from residual toxemia can occur even
after B. anthracis is cleared from the system, and there is currently
no extant therapeutic modality to directly combat LF-mediated
cytotoxicity [6,7].

As B. anthracis continues to pose a significant threat as a bio-
logical weapon, various experimental and computational efforts
have been focused on identifying small-molecule LF inhibitors as
potential drugs as adjunct therapeutics with antibiotics [4,8–33].
Previous computational modeling efforts have been primarily
directed toward structure-based virtual screening, pharmacophore
mapping, and 3D-QSAR model development [28–33]. While these
studies have been useful for the prediction of LF inhibitory activ-
ity and the identification of common molecular features in LF
inhibitors, compounds addressed in these studies have chiefly been
limited to one or two structural classes. Studies have demonstrated
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that models built on a structurally similar set of compounds occu-
pying closely adjacent areas of chemical space are likely to have
limited applicability in terms of identifying novel inhibitor classes,
and thus may  result in unreliable predictions when used in virtual
screening of structurally diverse chemical databases [34,35].

With the goal of overcoming this roadblock, in the current
work we have assembled a diverse set of active and inactive LF
inhibitors collected from the literature, to develop novel support
vector machine (SVM) models that can be used to accurately iden-
tify new compounds (or compounds based on novel scaffolds) that
may  exhibit favorable LF inhibitory activity. The SVM method has
consistently demonstrated robust predictivity in lead identification
and optimization, and has also proven useful in the prediction of
drug metabolism, blood–brain barrier penetration, p-glycoprotein
substrates, oral absorption, and the efficacy of various enzyme
inhibitor therapeutics [36]. The SVM models we report here have
been rigorously validated using 10-fold cross-validation, and they
have demonstrated quite favorable accuracy in predicting biologi-
cal activities of external, unbiased test set compounds. Specifically,
as discussed below, a particularly efficacious model using MOE
(Chemical Computing Group, Inc.) descriptors successfully identi-
fied 39 (95.12%) of 41 nanomolar-level LF inhibitors, while rejecting
46 (93.88%) of 49 inactives and 844 (99.65%) of 847 inactives in a
series of compound set evaluations. We  found that these validation
and testing results support the application of our SVM models as
screening tools for identifying potentially potent LF inhibitors.

2. Methodology

2.1. Data sets

Compound structures and biological activities for 546 LF
inhibitors of varying potency (database DB) were collected from
the literature as described in our previously published work
[37]. A total of 102 compounds with LF IC50 or Ki values less
than 1 �M were considered to be active LF inhibitors. These
displayed high structural diversity and included sulfonamide
hydroxamates, rhodanine-based derivatives, guanidinylated 2,5-
dideoxystreptamine derivatives, guanidinylated derivatives of
neamine, aniline, and �-ether, an N-sulfonylated phenylfuran
derivative, and an N-hydroxyhexanamide analog, among other
scaffold types. 122 compounds with specified IC50 or Ki values
larger than 100 �M,  or nonspecified IC50 or Ki values larger than
40 �M,  were considered to be inactive. Taken together, these 224
compounds (subset database DBA) were used for SVM model devel-
opment and validation. From among the remaining 320 compounds
in DB,  284 compounds (subset database DBB) with IC50 or Ki val-
ues ranging from 1 �M to 40 �M were treated as weakly active
compounds and were set aside for model validation. In addi-
tion to DB,  847 inactive compounds from two recently reported
high-throughput screening experiments deposited on Pubchem
BioAssay (AID: 602142 and 602326) were used as an external vali-
dation set and were termed database DBC. Although 13 compounds
in DBC were reported to be active, they lacked specific IC50 values
and were therefore not included in the validation set.

2.2. Computational methods

2.2.1. 3D Structure generation.
Three-dimensional conformations of all dataset structures were

generated via geometry optimization by energy minimization
in Pipeline Pilot, and were further geometry optimized in MOE
2011.10 (Chemical Computing Group, Inc.) using the MMFF94s
force field with a convergence criterion of 0.01 kcal/mol Å [38].

2.2.2. Molecular descriptor calculation.
2.2.2.1. MOE Descriptors. Molecular descriptors were used in this
study to quantitatively represent structural and physicochemical
properties of compounds. A total of 334 2D and 3D molecu-
lar descriptors were calculated using MOE  2011.10 [39]. These
included subdivided surface areas, atom counts and bond counts,
Kier & Hall connectivity and Kappa Shape indices, and physical
property-related, adjacency and distance matrix, pharmacophore
feature, partial charge, potential energy, MOPAC, surface area, vol-
ume  and shape, and conformation-dependent charge descriptors.
Any descriptors with missing values were eliminated, resulting in
a final set of 313 descriptors.

2.2.2.2. Schrödinger descriptors. We  incorporated a total of 292
topological, MOPAC, and ADME-tox related descriptors (relevant to
potential therapeutic design and optimization) from Schrödinger,
Inc., using Maestro 9.3 [40].

2.2.2.3. ISIDA Fragment descriptors. The Online Chemical Modeling
Environment was used to calculate a series of ISIDA 2D fragment
descriptors [41]. Descriptors with low variance (less than 0.01) or
with fewer than two  unique values were removed. Also, if the corre-
lation coefficient between two descriptors was larger than 0.95, one
descriptor was eliminated. A total of 748 ISIDA fragment descrip-
tors were utilized in this work.

2.2.3. SVM Modeling approaches
2.2.3.1. Data set division for model development and validation.
Database DBA was randomly split into a training set (Train 1) of
134 compounds (61 actives and 73 inactives, 60% of DBA) and an
external test set (Test 1) of 90 compounds (41 actives and 49 inac-
tives, 40% of DBA). In addition, in order to assess the ability of the
resulting SVM models to classify compounds that are structurally
dissimilar to the training set, active and inactive DBA compounds
were clustered based on ECFP 4 descriptors in Pipeline Pilot 8.0
(Accelrys, Inc.). One cluster containing 44 actives and one cluster
containing 51 inactives were extracted from DBA as an external
test set (Test 2). The remaining structures in DBA were retained as
a training set (Train 2), in order to ensure that Test 2 compounds
would be structurally dissimilar to those in Train 2.

2.2.3.2. Support vector machine (SVM). SVM is a popular and effec-
tive classification algorithm in which data points (in this case,
inhibitor compounds) are mapped onto descriptor-based feature
space, and a decision boundary (expressed as ωT x + b = 0) is iden-
tified using support vectors to separate compounds into two
categories (actives and inactives) by the widest gap (margin) via
a hyperplane. Support vectors often constitute a small portion of
examples in the training set, allowing an SVM model to be less
prone to overfitting while maintaining generalizability [42].

Specifically, for an input set of pairs (x(i), y(i)), i = 1, ..., m,  x(i) ∈
RP (P is defined as the dimension of the input space), y(i) ∈ {−1, 1},
presenting the classes of an sample x(i), the following optimization
can be formulated:

min�, ω, b
1
2

‖ω‖2

s.t.y(i)(ωT x(i) + b) ≥ 1, i = 1, ..., m

However, sometimes the data may  not be easily separable. Also,
where outliers exist, finding a separating hyperplane may  not offer
the best solution to a problem. In order for the algorithm to function
for non-separable data and exhibit less sensitivity to outliers, the
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