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Abstract

The conceptual and parameter uncertainty of the semi-distributed INCA-N (Integrated Nutrients in Catchments—Nitrogen)
model was studied using the GLUE (Generalized Likelihood Uncertainty Estimation) methodology combined with quantitative
experimental knowledge, the concept known as ‘soft data’. Cumulative inorganic N leaching, annual plant N uptake and annual
mineralization proved to be useful soft data to constrain the parameter space. The INCA-N model was able to simulate the seasonal
and inter-annual variations in the stream-water nitrate concentrations, although the lowest concentrations during the growing
season were not reproduced. This suggested that there were some retention processes or losses either in peatland/wetland areas or in
the river which were not included in the INCA-N model. The results of the study suggested that soft data was a way to reduce
parameter equifinality, and that the calibration and testing of distributed hydrological and nutrient leaching models should be based
both on runoff and/or nutrient concentration data and the qualitative knowledge of experimentalist.
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1. Introduction

Improved computational resources have made it
possible to develop and apply complex distributed
models to evaluate hydrological and nutrient processes
on a catchment scale (2006-this volume). As catchment
scale systems are heterogeneous and hydro-biogeo-
chemical processes are non-linear, the use of these
models has raised several questions concerning param-
eterization and calibration, such as equifinality and
over-parameterization (e.g. Beven, 2002).

The parameters in equations established for rela-
tively small-scale systems studied in the laboratory or
at the plot-scale are not necessarily valid in grid-based
representations of heterogeneous catchments: there is
no general method to derive model parameters by up-
scaling point measurements to fluxes averaged over
space or time and, in practice, it is impossible to
measure all the parameters required for each grid cell
(Beven, 1989, 2001; Blöschl and Grayson, 2002).
According to Beven (2006), several empirical studies
have shown that many models and many parameter
combinations give equally good fits to data, indicating
that it is impossible to find an optimal model or an
optimal parameter set in hydrological modelling: a
problem termed equifinality. Problems caused by
heterogeneity and non-linearity in parameterizing a
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hydrological model have been demonstrated for
example by Durand et al. (2002).

The type and spatial resolution of a catchment-scale
model define the input data needed for calibration. A
model with a simple structure often does not make the
best use of the available data. Conversely, the model
structure and the model parameters cannot be identified
properly if there are too many model parameters and
insufficient data to test the model performance. The
latter is known as over-parameterization of a model
(Refsgaard, 1997; Beven, 2001; Blöschl and Grayson,
2002). To avoid over-parameterization Refsgaard
(1997) and Perrin et al. (2001) have suggested limiting
the number of parameters subject to adjustment during
calibration.

In hydrological modelling additional data or
experimental knowledge of system behaviour are
often used to assess the reliability of stream flow sim-
ulations. According to Refsgaard (1997) and Blöschl
and Grayson (2002) calibration of distributed hydro-
logical models should be based not only on discharge,
but also on spatial patterns of other hydrological
variables in catchment. In multi-criteria calibration, the
model is calibrated using other complementary data in
addition to discharge at the basin outlet (Vrugt et al.,
2003b). Uhlenbrook and Sieber (2005) found that the
incorporation of additional data, i.e. sub-basin runoff
and observed tracer concentrations, reduced the pre-
diction uncertainty of discharge. The same outcome
was concluded by Khadam and Kaluarachchi (2004),
who presented a method to incorporate soft informa-
tion to describe the relative accuracy of calibration
data.

Seibert and McDonnell (2002) presented a method
where ‘soft data,’ defined as the qualitative knowledge
of an experimentalist, were made useful through fuzzy-
measures of model simulation acceptance. Soft data
include high degree of uncertainty due to the spatial or
temporal variation in the measurements, and may also
include some expert knowledge. They conclude that
even though a hydrological model calibrated using the
concept of soft data in addition to calibration against
observed runoff and groundwater levels gave lower
runoff-efficiency values, it gave a more realistic
description of the catchment behaviour in their
perception.

In order to evaluate how well the system is described
the model performance should be tested by comparing
model predictions with independent data: data not used
for calibration (Klemes, 1986). Even if a model shows in
validation tests that it can perform the kind of task for
which it is specifically intended, the model may perform

well for the wrong reasons. For example, errors in model
structure can be compensated by errors in parameter
values. Refsgaard and Henriksen (2004) and Refsgaard
et al. (in press) recommended the inclusion of an
uncertainty assessment of model structure and param-
eter values in modelling studies, especially in cases
when predictions are made beyond the range of
available observations, e.g. to study the effects of future
climate or land management changes.

Sensitivity and uncertainty analyses are primarily
concerned with the question of how model outputs are
affected by the variability of the model parameters and
input values, and provide useful information when these
components are not completely known. Sensitivity
analysis is the determination of which parameters pre-
dominately control the model behaviour (Hamby, 1994),
whereas uncertainty analysis is the estimation of error in
the model output due to uncertainty in the model
structure, parameters and data inputs (Thiemann et al.,
2001; Vrugt et al., 2005). The Generalized Likelihood
Uncertainty Estimation (GLUE) (Beven and Binley,
1992) approach defines the performance of possible
parameter sets in terms of likelihood measures. Different
uncertainty analysis methods in hydrological modelling
are compared by Yu et al. (2001), Beven and Young
(2003), Gupta et al. (2003), Mailhot and Villeneuve
(2003) and Balakrishnan et al. (2005).

In recent years different sensitivity and uncertainty
analyses have been applied to distributed, or semi-
distributed, hydrological and nutrient leaching models.
In this study, the main aim was to assess the structural
and parameter uncertainty of the INCA-N (Integrated
Nutrients in Catchments—Nitrogen) model (Whitehead
et al., 1998; Wade et al., 2002a) using automatic
calibration and the GLUE methodology (Beven and
Binley, 1992) combined with the concept of soft data
(Seibert and McDonnell, 2002). INCA-N is a widely
used model of flow and nitrogen transport in river-
systems covering a range of spatial scales (1–4400 km2;
Wade et al., 2002b). Even though Monte-Carlo based
methods, such as GLUE, are computationally not the
most effective ones, they have been applied successfully
to several different hydrological and water quality
models (Yu et al., 2001; Mailhot and Villeneuve,
2003; Balakrishnan et al., 2005; Muleta and Nicklow,
2005; Pastres and Ciavatta, 2005).

Raat et al. (2004) assessed measurement uncert-
ainty by using INCA-N model and the Shuffled
Complex Evolution Metropolis algorithm (SCEM-
UA, Vrugt et al., 2003a) in a virtual catchment. The
authors concluded that none of the synthesised data sets
contained sufficient information to identify the model
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