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ABSTRACT

Uncertainty–weighted partial least squares discriminant analysis was used to identify key species that were
subsequently included in the EPA CMB8.2 chemical mass balance model to assess PM2.5 source
contributions from a previously published data set on school bus self–pollution. Estimates from this two–
step modeling approach, herein referred to as effective variance discriminant analysis chemical mass
balance (EVDA–CMB) were compared for eight separate runs with independent estimates from a synthetic
tracer method. EVDA–CMB model predictions agreed favorably with those from the tracer method
(R2 = 0.83, 0.96 and 0.48, for contributions from the bus tailpipe, the engine crankcase and from other
sources, respectively). Predictions from the traditional CMB model (without prior species selection), did not
agree as well with the tracer method estimates of the bus tailpipe and engine crankcase contributions
(R2 = 0.18, 0.69, respectively), but did agree as well with the contributions from other sources (R2 = 0.60).
Although this study required discrimination of only a few sources, the same approach could be applied to
the more general receptor modeling problem as an initial screening procedure, including approaches that
optimize the choice of variables based on ambient data. This is important given that the number of species
available for use in receptor modeling is rapidly expanding.
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1. Introduction

Receptor modeling has been used to estimate the contri
bution of various sources to measured airborne particulate matter
concentrations (Henry, 1997; Hopke and Song, 1997; Seigneur et
al., 1997). Traditionally, the U.S. EPA has recommended using the
effective variance weighted chemical mass balance (CMB) receptor
model (Miller et al., 1972; Watson et al., 1984), although less
constrained multi–variate approaches have recently been widely
used (Paatero, 1997; Henry et al., 1999; Paatero, 1999; Henry,
2003). More recent applications of the CMB method have explored
the use of unique particulate organic tracers (Schauer et al., 1996;
Zheng et al., 2002) as well as combined particulate and gaseous
tracers (Schauer and Cass, 2000; Schauer et al., 2002).

One less well known alternative to CMB is partial least squares
regression (PLS). PLS was originally developed by Herman Wold
(Wold, 1966; Wold, 1981) and took his name when it was applied
to the over–determined regression problem (Wold et al., 1983;
Geladi and Kowalski, 1986). It was first applied to the aerosol
source apportionment problem by Frank and Kowalski (1985).
Vong et al. (1988) showed how PLS could solve this apportionment
as a discriminant analysis problem. This latter approach has since
been used in a limited number of similar studies (Larson and Vong,
1989; Vong, 1993; Wang and Larson, 1993; Norris, 1998). Similar to
the effective variance–weighting scheme used in the EPA’s CMB
model (Watson et al., 1984), Norris (1998) introduced the idea of

uncertainty weighted PLS, thereby accounting for individual
species measurement uncertainties.

Here we apply uncertainty weighted PLS in order to determine
key tracer species for subsequent use in a traditional chemical
mass balance (CMB) model in order to estimate the source
contributions to PM2.5 inside a school bus. This two–step CMB
model incorporating prior PLS discriminant analysis is one
realization of what we refer to here as an effective variance
discriminant analysis chemical mass balance model (EVDA–CMB ).

The PLS algorithm provides an automated way to identify and
highlight those species that differentiate the proposed sources,
down–weighting the other species (Vong et al., 1988; Larson and
Vong, 1989; Norris, 1998). These species are then used in CMB.
The subsequent source contribution estimates are then compared
with independent estimates of the relative contributions from each
source that have been established by the use of unique, synthetic
source tracers (Ireson et al., 2004; Zielinska et al., 2008; Liu et al.,
2010).

Our data set is described in more detail elsewhere (Zielinska et
al., 2008; Liu et al., 2010) and consists of ambient filter samples
taken inside two diesel school buses and source samples taken
from the tailpipe, from the crankcase road draft tube, and from the
roadway traversed by each bus (“other sources”). Our initial
attempts at CMB were only moderately successful in deducing the
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relative source contributions to in–bus concentrations as judged by
comparison with results obtained from the tracer–based method.
This discrepancy was due in part to the relatively large number of
measured species in this data set and the accompanying difficulty
in selecting the appropriate species for use with CMB. We
therefore decided to explore the use of an alternate species
selection method for use with CMB, as described below.

2. Methods

The sampling and analysis methods are described in detail
elsewhere (Zielinska et al., 2008; Liu et al., 2010) and briefly here.
Unique, synthetic tracers were added to both the fuel supply and
the lubricating oil. Tris(norbornadiene)iridium(III)acetylacetonate,
an organometallic iridium complex was dissolved in toluene
(1 g:225 mL) and added to each bus’ fuel tank to track tailpipe
exhaust particulate. Fully deuterated normal hexatriacontane
(n–C36D74 or d–alkane) was dissolved in the bus’ lubricant oil
(100 g:18.9 L) to track crankcase emissions.

Source sampling involved using an on–board dilution tunnel
(Weaver and Petty, 2004) to collect PM2.5 samples from the
tailpipe and the crankcase, respectively, of each bus. A lead vehicle
drove the same route as the bus, ahead of the bus by
approximately 5 minutes. A set of source profiles to represent
other sources was developed based upon computed mass fractions
of the species measured on the lead vehicle samples. In addition, a
total of eight in–bus/lead vehicle sample pairs (Teflon and quartz
filters) were taken using identical UMd impactors at 120 L/min. The
windows in the lead vehicle were wide open during all sampling
runs. The concentrations of particulate organic compounds are
described in detail by Zielinska and co–workers (Zielinska et al.,
2008).

The uncertainties for the in–bus samples were taken directly
from the reported analytical uncertainties. The measurement
uncertainties for the XRF and OC/EC fractions were reported using
standard EPA protocols. The analytical uncertainties for the organic
species were based on known deuterated internal standards.
Compounds for which authentic standards were not available were
quantified based on the response factor of standards most closely
matched in structure and retention characteristics (Zelinksa et al.,
2008). There were three sets of source samples taken for each of
the eight runs (with one sample excluded due to sampling issues).
The average analytical uncertainties of the three samples taken
during each run were used as the uncertainties in this analysis.

2.1. CMB diagnostics

The standard EPA model, CMB8.2, was used in this analysis. It
employs a weighted ordinary least squares solution to the
following mass balance equation

C FS (1)

where C (nx1) is the vector of observed concentrations of n species
(μg/m3), F (nxp) is a source profile matrix of n species from p
sources (μg/μg mass), S (px1) is the source contribution vector
(μg mass/m3), and (nx1) is the vector of random measurement
errors. The species are weighted by their respective measurement
uncertainties involving an iterative procedure that includes the one
standard deviation measurement uncertainties for the ith species in
both the source and ambient samples, source (μgi /μg mass) and
amb (μg mass/m3) respectively (Watson et al., 1984). Specifically,

the weighted equation that is actually solved is:
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Ve (nxn) is the diagonal effective variance matrix whose off–
diagonal elements are zero and whose diagonal elements are:
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where sj is the contribution from the jth source. The fact that the sj
are computed from Equation (2) means that the CMB8.2 algorithm
is implicit and thus iterative. The first iteration initially assumes all
the sj are zero in Equation (5) and then computes the sj from
Equations (2)–(4) for use in subsequent iterations (Watson et al.,
1984). The iteration procedure is stopped when the current and
prior value of sj are within one percent of each other. The final
source contribution estimates in the original mass concentration
units are then computed as:
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By definition, the modified pseudo–inverse matrix (MPIN) is
given as:
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Guidance is provided within CMB8.2 on those species that are
influential and thus should be included in the model. Specifically,
the elements of the normalized MPIN matrix, whose values range
from –1 to 1, should be greater than 0.5 for species that are to be
retained in the model (Kim and Henry, 1999; Watson, 2004).

Additional run diagnostics in CMB8.2 provide measures of the
collinearity of the given set of weighted source profiles, including
Henry’s (1992) eligible space based on the singular value
decomposition of the weighted F matrix as follows:
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where A (n x n) and V (p x p) are orthogonal matrices and D is a
diagonal matrix with p nonzero and positive elements called the
singular values of the decomposition. V is the matrix of eigen–
vectors of the decomposition. The eligible space is that spanned by
these eigenvectors with inverse singular values less than or equal
to the maximum score uncertainty. The estimable sources are
those with a user defined minimum source projection within the
estimable space, set at a default value of 0.95. CMB8.2 provides
suggestions for combining highly collinear profiles (Henry, 1992),
but provides no additional guidance on species selection so as to
minimize collinearity of existing source profiles. Several authors
have suggested alternative methods to minimize the collinearity
problem, including ridge regression (Hopke, 1985) and non–
negative principal component regression (Shi et al., 2009).

2.2. Species selection based on effective variance weighted
discriminant analysis

As an alternate species selection strategy, we present here an
effective variance weighted, partial least–squares discriminant
analysis algorithm to select influential species for inclusion in the
CMB model (EVDA–CMB) while minimizing collinearity. Source
contributions from the crankcase, the tailpipe and other sources
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