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Application of direct regularization techniques and bounded-variable
least squares for inverse modeling of an urban emissions inventory
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ABSTRACT

Inverse modeling, coupled with comprehensive air quality models, is being increasingly used for improving spatially
and temporally resolved emissions inventories. Of the techniques available to solve the corresponding inverse
problem, regularization techniques can provide stable solutions. However, in many instances, it is not clear which
regularization parameter selection method should be used in conjunction with a particular regularization technique to
get the best results. In this work, three regularization techniques (Tikhonov regularization, truncated singular—value
decomposition, and damped singular-value decomposition) and three regularization parameter selection methods
(generalized cross validation, the L—curve method (LC), and normalized cumulative periodograms) were applied in
conjunction with an air quality model with the aim of identifying the best combination of regularization technique and
parameter selection method when using inverse modeling to identify possible flaws in an urban—scale emissions
inventory. The bounded-variable least-squares method (BVLS), which is not usually considered a regularization
method, was also investigated. The results indicate that the choice of the regularization parameter explains most of
the differences between the regularization techniques used, with the LC method exhibiting the best performance for
the application described here. The results also show that the BVLS scheme provides the best agreement between the
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observed and modeled concentrations among the mathematical techniques tested.
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1. Introduction

Three—dimensional comprehensive air quality models (AQMs)
describe the atmospheric transport and transformation of trace
species and are routinely used in the development of pollution—
reduction strategies and other air quality management policies.
However, to produce accurate, trustworthy results, AQMs rely on
the use of detailed emission inventories that, even today, convey a
great degree of uncertainty (Miller et al., 2006; Russell, 2008). This
translates into model applications in which discrepancies between
model-derived concentrations and observations of air pollutants
can be quite large. In this description, we are assuming that the
AQM is perfect and the emissions are one of the most uncertain
input parameters in the modeling effort (e.g. Russell and Dennis,
2000; Tian et al., 2010).

One way of reducing emission inventory uncertainty is to use
inverse modeling or data assimilation techniques to identify
possible flaws in the construction of such emission inventories.
Applications of inverse modeling range from global (e.g., Petron et
al., 2002) or continental (e.g., Elbern et al., 2007) to regional or
urban scales (e.g., Quelo et al., 2005) for a variety of atmospheric
species such as stratospheric ozone depletion substances (e.g.,
Xiao et al.,, 2010), greenhouse gases (e.g., Stohl et al., 2009),
radioactive material (e.g., Winiarek et al., 2012), and tropospheric
ozone and aerosol precursors (e.g., Gilliland et al.,, 2006;
Napelenok et al., 2008; Henze et al., 2009). In this context, several
mathematical techniques have been used to find solutions for the
corresponding inverse problems, including four—dimensional data
assimilation (e.g., Meirink et al., 2008), Kalman or ensemble
Kalman filtering (e.g., Napelenok et al., 2008), and the use of

adjoint models (e.g., Hakami et al., 2005). Li et al. (2010) used
genetic algorithms for optimizing inventories, but their application
was limited because of the necessary computational requirements.

One approach for performing this top—down emissions
inventory evaluation is to first use a forward model (the AQM) to
compute both the simulated concentration fields of pollutants and
their responses to changes in emissions (sensitivity fields). With
this, a linear model of the form Gm=d can be constructed, where d
is a vector containing the difference between modeled and
observed concentrations, G is a matrix containing the sensitivity
coefficients of all pollutant species to changes in the emission
strengths, and m is a vector of emission strength changes that
brings the observations and model-derived concentrations into
agreement. Then, if an over—determined least—squares problem is
solved, the corresponding inverse model can be represented as
me“=(GTG)’1GTd, where G is the transpose of G. However, inverse
problems are typically ill conditioned, and this is an inconvenience
because in practice, observations often possess a certain degree of
error or noise (Aster et al., 2005).

Several mathematical techniques based on the incorporation
of known properties about the solution have been developed with
the aim of improving the conditioning of direct inverse problems,
including regularization. However, there are few examples of the
use of regularization techniques to obtain inverse—derived
emissions inventories. In particular, few formal methods have been
applied to obtain the value of the regularization parameters. This
paper addresses the issue of performing inverse modeling of an
urban air—pollutant emission inventory by applying direct
regularization techniques. Three regularization techniques and
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three regularization parameter choice methods were assessed. An
additional technique investigated, which is not usually considered
a regularization method, was the bounded—variable least-squares
(BVLS) method.

2. Methods
2.1. Regularization methods

Three regularization methods were explored in this work:
Tikhonov  regularization  (TIKH), truncated singular—value
decomposition (TSVD), and damped singular—value decomposition
(DSVD). Tikhonov’s method consists of substituting the least—
squares problem for a problem of the form (Neumaier, 1998):

m®" = min{|Gm—dl, +|Lni],} (1)

where L=Al, | is typically the identity matrix, and AeR is a
regularization parameter that controls the weight given to the
minimization of the additional restriction relative to the
minimization of the residual norm. Thus, TIKH seeks a solution that
minimizes a criterion made up of the sum of two components: a
weighted least—square term and a quadratic penalty term on the
solution.

The singular-value decomposition of matrix G with r=rank(G),
as in the following equation:

,
G=Usr" =Y ouyl 2)

i=l1

can be used to obtain the Moore—Penrose pseudo—inverse of G.
However, the generalized inverse solution can become unstable
when some of the singular values, g;, are small (Aster et al., 2005).
Therefore, in TSVD, it is assumed that it is possible to recover a
useful model by truncating the sum in Equation (2) in an upper—
bound k<r before the smallest singular values start dominating
(Hansen, 1990). When k=r, the solution of TSVD is identical to the
solution obtained by ordinary least-square methods. However, a
solution obtained from TSVD with k<r will tend to be more stable
(Aster et al., 2005).

In equation (2), U is an orthogonal matrix with columns that
are unit basis vectors (u;) spanning the data space, V is an
orthogonal matrix with columns that are basis vectors (v;) spanning
the model space, Vs the transpose of V, viT is the transpose of v,
and S is a diagonal matrix with nonnegative diagonal elements (o;,
the singular values).

Finally, DSVD (Ekstrom and Rhoads, 1974) may be regarded as
a regularization method that follows Tikhonov in terms of its TSVD,
with the difference being that DSVD introduces a smoother cutoff
by means of filter factors that decay slower than the Tikhonov
method, overall requiring less filtering (Hansen, 1998; Lin et al.,
2011).

2.2. Regularization parameter choice methods

Although the proper choice of the regularization parameter
(either the continuous parameter A or the discrete parameter k) is
essential for the effectiveness of the regularization methods
applied (Hansen, 1998), the optimal determination of this
parameter remains an open issue (Krawczyk—Stando and Rudnicki,
2007; Lin et al.,, 2011). Some previous studies where inverse
modeling has been applied to evaluate emissions inventories have
used formal methods to obtain the value of the regularization
parameter (Fan et al., 1999; Mendoza—Dominguez and Russell,
2001; Krakauer et al., 2004; Chai et al., 2009; Henze et al., 2009;
Saide et al., 2009). However, the strategy of assigning values to the

regularization parameter subjectively, or empirically, prevails (e.g.,
Eckhardt et al., 2008).

In this study, we explore three methods that do not require a
good estimate of the noise variance: generalized cross validation
(GCV) (Golub et al., 1979; Haber and Oldenburg, 2000), which is a
parameter—choice method based on ordinary cross validation
(Allen, 1974); the L—curve method (LC), which uses a plot of the
valid regularization parameters of the (semi) norm of the
regularized solution versus the corresponding residual norm (the
best regularization parameter must be located in the corner of the
L—curve) (Hansen and O’Leary, 1993); and normalized cumulative
periodograms (NCP) (Rust, 2000; Rust and O’Leary, 2008), which
chooses the regularization parameter for which the residual
becomes closer to behave as white Gaussian noise.

2.3. Regularization with restrictions

Regardless of whether regularization methods tend to yield
more stable, precise solutions, these solutions will often lack
physical sense or violate some of the restrictions imposed by the
nature of the problem. In our case we need to guarantee positive
emissions. Several techniques incorporate additional restrictions to
impose boundaries for the solution or add additional information
about the solution. One such technique is the BVLS (Stark and
Parker, 1995), which solves linear least—squares problems with
upper and lower bounds on the variables.

BVLS uses an active set strategy in which the unconstrained
least—squares problems for each candidate set of free variables are
solved using the QR decomposition. The method also includes a
“warm-start” feature that accelerates the solution by allowing for
some of the variables to initialize at their upper or lower bounds.
Stark and Parker’s BVLS algorithm is based on the non—negative
least squares method (Lawson and Hanson, 1974).

In this study, we use this additional technique in our
application and compare it with the solutions obtained by
regularization.

2.4. Application to the GMA emissions inventory

The base case, reported by Mendoza and Garcia (2009), for
the modeling of photochemical pollutants in the Guadalajara
Metropolitan Area (GMA; 20° 40’ 25” N, 103° 20’ 38” W) was used
as case study. The GMA is the second largest urban center in
Mexico, emissions are rather concentrated around the urban core
(~600 kmz), and no important emission sources are located around
this core. In the application described here, the same AQM, spatial
configuration of the modeling domain, as well as the same
meteorological fields, emissions inventory, and initial and
boundary conditions were used. In that study, the California/
Carnegie Institute of Technology (CIT) model extended with the
capacity of estimating first—order sensitivity coefficients through
the direct—decoupled method for three—dimensional models (Yang
et al., 1997) was applied for the simulation of a three—day high—
ozone concentration episode, occurring from May 16 to May 18,
2001. May was selected for the modeling exercise because it is the
month when O; concentrations peak in the GMA (Zuk et al., 2007).
The modeling domain was a computational matrix composed of
40x40 cells (horizontal resolution), with each cell being 4x4 km and
geographically centered in the GMA. In addition, the domain
included six vertical levels topping at 3 100 m.

The emission inventory used by Mendoza and Garcia (2009)
was based on the 1995 Official Emissions Inventory for the GMA.
This inventory had to be extended to provide coverage for the
additional municipalities that were included in the modeling
domain and that were not part of the GMA. In addition, this
inventory had to be scaled from the base year (1995) to the
modeled year (2001) and had to be spatially segregated based on
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