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a  b  s  t  r  a  c  t

Phosphorylation  of  viral  proteins  plays  important  roles  in  enhancing  replication  and  inhibition  of  normal
host-cell  functions.  Given  its importance  in biology,  a unique  opportunity  has arisen  to  identify  viral
protein  phosphorylation  sites.  However,  experimental  methods  for identifying  phosphorylation  sites  are
resource intensive.  Hence,  there  is significant  interest  in  developing  computational  methods  for  reliable
prediction  of  viral  phosphorylation  sites  from  amino  acid  sequences.  In  this  study,  a new  method  based
on  support  vector  machine  is  proposed  to identify  protein  phosphorylation  sites  in viruses.  We  apply  an
encoding  scheme  based  on  attribute  grouping  and  position  weight  amino  acid  composition  to extract
physicochemical  properties  and  sequence  information  of  viral  proteins  around  phosphorylation  sites.
By 10-fold  cross-validation,  the prediction  accuracies  for phosphoserine,  phosphothreonine  and  phos-
photyrosine  with  window  size  of  23 are  88.8%,  95.2%  and 97.1%,  respectively.  Furthermore,  compared
with  the existing  methods  of  Musite  and  MDD-clustered  HMMs,  the  high  sensitivity  and  accuracy  of  our
presented  method  demonstrate  the  predictive  effectiveness  of  the  identified  phosphorylation  sites for
viral proteins.

© 2014  Elsevier  Inc.  All  rights  reserved.

1. Introduction

Protein phosphorylation is a ubiquitous post-translational mod-
ification (PTM) that controls a number of intracellular processes. It
has been estimated that at least one-third of the cellular proteins
are modified by phosphorylation [1]. In eukaryotic cells, phosphor-
ylation occurs almost exclusively on serine, threonine or tyrosine
residues [2]. Also for viruses, including vesicular stomatitis virus,
human immunodeficiency virus type 1 (HIV-1), mosaic virus, and
H1N1 influenza virus, protein phosphorylation has been shown to
regulate vital processes such as virus transcription and replica-
tion, RNA binding activity, and virus assembly [3–7]. For instance,
Polo-like kinase 1 (Plk1) can phosphorylate cyclin T1 at Ser564 and
inhibit the kinase activity of cyclin T1/Cdk9 complex on phosphor-
ylation of the C-terminal domain (CTD) of RNA polymerase II [8].
Hsiang et al. demonstrated that the only serine 42 (S42) phosphor-
ylation of the NS1 protein catalyzed by protein kinase C�(PKC�)
regulated human influenza A virus replication [9]. Cheng et al.
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identified membrane-associated serine/threonine kinase-like pro-
tein from Nicotiana benthamiana involved in the cell-to-cell
movement of Bamboo mosaic virus (BaMV) [10]. Therefore, investi-
gating virus phosphorylation sites can provide useful clues for drug
design and the treatment of various viral infections.

Phosphorylation site identification is usually experimentally
determined by mass spectrometry-based techniques [11]. This
has led to the establishment of several databases of phosphor-
ylation sites, such as ‘the Phosphorylation Site Database’ [12],
‘Phospho.ELM’ [13], ‘Phosphosite’ [14], and ‘PhosPhAT’ [15]. While
useful, mass spectrometry requires very expensive instruments
and specialized expertise that are not available in typical labora-
tories [16]. At the same time, the identification of kinase specificity
rules with mass spectrometry still remains a relatively slow and
often inefficacious task. Thus, various computational methods for
identifying protein phosphorylation sites have been proposed,
including artificial neural networks (ANNs) [17,18], hidden Markov
models (HMMs) [19,20], position-specific scoring matrices (PSSMs)
[21–23], support vector machines (SVMs) [24–27], and more details
can be found in recent reviews [28,29].

In virus phosphorylation prediction, Schwartz and Church used
the scan-x tool to identify 329 phosphorylation sites in proteins
from 52 human viruses [30]. However, it has not investigated the
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various substrate motifs for viral protein phosphorylation sites
[31]. More recently, Bretaña et al. employed maximal dependence
decomposition (MDD) to investigate kinase substrate specificities
in viral protein phosphorylation sites [31]. Although, the average
accuracies of serine and threonine using the MDD-clustered HMMs
were 84.93% and 78.05%, respectively, the number of phosphory-
lated serine sites was only 233, and 54 for phosphothreonine sites.
As we all know, a small number of training set may  be over-fitting.
Hence, there is a need to develop a computational method in iden-
tifying enormous amount of viral protein phosphorylation data by
selecting more informative feature descriptors.

In this paper, we presented a new approach to predict viral
phosphorylation sites based on support vector machine. Physico-
chemical properties of amino acids and position weight amino acid
compositions were utilized to extract sequence features of virus
proteins. Our current work contained the following contents: (1)
two types of features were analyzed, (2) SVM was employed to
deal with the problem of binary classification, (3) ten-fold cross-
validation method was chosen to evaluate the performance of SVM
classifier, (4) the effect of window length was investigated, and (5)
the independent testing data was used to compare with the existing
models.

2. Materials and methods

2.1. Data collection and statistics

All training datasets were extracted from the NCBI RefSeq and
the Plant Protein Phosphorylation Database (P3DB) [32] databases,
as presented in Fig. 1. Firstly, we obtained 327 proteins with 2793
experimental phosphorylation sites by searching information con-
taining “phosphorylation” and “virus” from the NCBI RefSeq. The
P3DB is one of the most significant in vivo data resources for
studying plant phosphoproteomics. According to the keyword of
virus, we obtained 363 proteins covering 1274 experimental phos-
phorylation sites from the P3DB. Secondly, the sliding window
strategy was used to extract positive and negative datasets from
protein sequences, which were represented by peptide sequences
with serine, threonine and tyrosine symmetrically surrounded
by flanking residues. If the candidate phosphorylation sites were
near the N- or C-terminus, we used the letter “O” instead of
the absent letters. We  respectively designated peptide sequences
of experimentally validated phosphoserine, phosphothreonine
and phosphotyrosine as positive datasets. It would be difficult
to prove definitively that a particular serine/threonine/tyrosine
residue is not phosphorylated under any conditions. Almost all
of researchers of phosphorylation prediction made the assump-
tion that any serine/threonine/tyrosine residue that is not marked
by any phosphorylation information on the same protein is a
non-phosphorylated site [25,31,33]. Besides, Radivojac et al. have
concluded that the choosing of negative samples upon this assump-
tion did not significantly influence prediction performance through
comparing with that of using the validated negative samples [34].
So we adopt this assumption that negative samples were the
serine/threonine/tyrosine residues that were not marked by any
phosphorylation information on the same proteins, the rational of
which is that the resulting negative samples are more likely to be
non-phosphorylation sites than those obtained by random as these
proteins were experimentally investigated. Although not all these
sites are necessarily true negatives, it is reasonable to believe that
a large majority of them are [35]. Moreover, the redundancy reduc-
ing process was also carried out on training datasets. For example,
for two phosphorylated serine peptide sequences with 100% iden-
tity, when the phosphoserine sites in the two proteins were in
the same positions, only one was kept. After strictly following the

above procedures, we attained 2444 high quality positive sites for
phosphoserine, 635 positive sites for phosphothreonine, and 268
positive sites for phosphotyrosine, as shown in Supplementary
materials (see Tables S1–S3).

Meanwhile, in order to further evaluate the performance of our
method and compare it with existing methods, an independent
testing set was extracted from the viral posttranslational mod-
ification (virPTM) database (http://virptm.hms.harvard.edu/),
which includes 230 phosphoserine sites and 2494 non-
phosphorylated serine sites, 61 phosphothreonine sites and
1211 non-phosphorylated threonine sites, 14 phosphotyrosine
sites and 57 non-phosphorylated tyrosine sites from 111 human
virus proteins shown in Fig. 1. Finally, the ratio of positive and
negative samples was  1:1 and three negative training sets were
obtained by randomly extracting from the negative datasets, with
expectation to ensure unbiased and objective results.

2.2. Feature encoding

2.2.1. Encoding based on attribute grouping
Previously, Fan and Zhang have detected that the serine and

threonine acceptor site microenvironment is depleted in nonpolar
and hydrophobic amino acids. Whereas the tyrosine acceptor site
microenvironment is characterized by only one enriched property,
namely the charge, and is depleted in cysteine (C) and proline (P),
which are neutral residues [36].

Thus, we adopted an encoding scheme of protein sequences
considering the hydrophobicity and charged character of amino
acid residues. The encoding method based on attribute grouping
(named as EBAG) divides the 20 amino acid residues into four
different classes according to their physicochemical property: the
hydrophobic group C1 = [A, F,G, I, L, M,  P, V, W],  the polar group
C2 = [C, N, Q, S, T, Y], the acidic group C3 = [D, E], and the basic group
C4 = [H, K, R] [37,38].

Given a protein sequence p fragment with 2L + 1 amino acid
residues, we used the above classification to transform it into four
binary sequences as follows:

H1p(j) = 1 if p(j) ∈ C1 else H1p(j) = 0

H2p(j) = 1 if p(j) ∈ C2 else H2p(j) = 0

H3p(j) = 1 if p(j) ∈ C3 else H3p(j) = 0 j  = −L, . . .,  L

H4p(j) = 1 if p(j) ∈ C4 else H4p(j) = 0

(1)

2.2.2. Position weight amino acid composition
To reveal the sequence-order information around phosphor-

ylation sites, we  used position weight amino acids composition
(PWAA) to extract the sequence position information of amino acid
residues. Given an amino acid residue ai (i = 1, 2, . . .,  20), we can
express the position information of amino acid ai in the protein
sequence fragment p with 2L + 1 amino acids by following formula:

Ci = 1
L(L + 1)

L∑
j=−L

xi,j

(
j + |j|

L

)
, j = −L, . . .,  L (2)

where L denotes the number of upstream residues or downstream
residues from the central site in the protein sequence fragment p,
xi, j = 1 if ai is the jth position residue in protein sequence fragment p,
otherwise xi, j = 0. Finally, a protein sequence fragment p is defined
as 20 dimension feature vectors.

2.3. Model learning and evaluation

SVM is a supervised learning method for classification and
regression designed by Cortes and Vapnik [39]. The principle of
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