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a  b  s  t  r  a  c  t

Glucokinase  (GK)  has  received  recent  interest  as  a valid  antidiabetic  target.  With this  in mind,  we applied
a computational  workflow  based  on  combining  pharmacophore  modeling  and  QSAR  analysis  followed  by
in  silico  screening  toward  the discovery  of  novel  GK  activators.  Virtual  screening  identified  10  promising
bioactivators  from  the  National  Cancer  Institute  (NCI)  list  of compounds.  The most  potent  NCI  hit  illus-
trated  6.3-fold  GK  activation  at  10 �M. These  results  demonstrated  that  our  virtual  screening  protocol
was  able  to identify  novel  GK  activator  leads for  subsequent  development  into  potential  antidiabetic
agents.

©  2014 Elsevier  Inc.  All  rights  reserved.

1. Introduction

Glucokinase (GK), also referred to as hexokinase IV or D, is a
member of the hexokinases family. It is predominantly expressed in
the liver and pancreas. GK catalyses the phosphorylation of glucose
to glucose-6-phosphate (G6P) via adenosine triphosphate (ATP)
and Mg2+. Furthermore, GK exerts high control in hepatic glucose
metabolism. It acts as key player in the fed state by influencing glu-
cose uptake, while in the fasted state it controls glucose production
[1].

Several GK mutations have been linked to abnormalities in blood
sugar levels due to either gain or loss of function in GK. Loss-of-
function mutations in the GK gene is linked to type 2 diabetes of the
young characterized by early onset of mild chronic fasting hyper-
glycemia [2]. On the other hand, rare activating mutations of GK in
man  cause hyperinsulinaemia with hypoglycaemia [3].

GK has a unique kinetic profile compared to other hexokinases.
It has low affinity to glucose at low glucose concentrations; how-
ever, it becomes significantly more active at higher glucose levels.

∗ Corresponding author. Tel.: +962 6 5355000x2330; fax: +962 6 5339649.
E-mail address: mutasem@ju.edu.jo (M.O. Taha).

This sigmoidal response to glucose concentration is referred to as
‘positive kinetic cooperativity for glucose’ and it seems to be related
to the unique kinetic transition forms of GK [3].

GK has both open and closed crystal structures in the absence
and presence of ligands (glucose and/or GK activators), respec-
tively. It is postulated that in the presence of bound glucose the
closed GK conformations are stabilized and GK becomes bioactive
(switched on), while the open form is catalytically inactive and is
the more stable form in the unbound state (switched off) [4].

The combination of positive kinetic cooperativity, low affinity
to glucose at low glucose concentrations, and lack of end-product
inhibition render GK activators of excellent potential as treatments
of hyperglycemia and diabetes [5]. Activation of GK is expected
to lead to better glycemic control through hepatic and pancreatic
pathways. Additionally, the reduction in GK activity in response to
low glucose levels reduces the possibility of hypoglycaemia during
the treatment with GK activators [6].

Initial reports from Hoffmann-LaRoche Inc. about new GK acti-
vators (GKAs) (Fig. 1) prompted many pharmaceutical companies
to initiate discovery projects to identify small-molecule GKAs
as potential treatments for diabetes [5,7]. X-ray crystallographic
images of GKAs co-crystallized within GK showed that these com-
pounds bind to an allosteric pocket in the enzyme [3]. GKAs increase
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Fig. 1. Selected structures of GKA generated by Hoffmann-LaRoche and AstraZenaca.

the affinity of GK for glucose by stabilizing the closed conforma-
tions of this kinase, i.e.,  in a similar manner to that of GK binding to
glucose.

Unsurprisingly, recent discovery and optimization efforts for
new GK activators relied heavily on structure-based ligand design
[8]. Up to now, 11 X-ray complexes are found in the Protein Data
Bank for human GKa (e.g., PDB codes: 3ID8, 3IDH, 3FGU, 3H1V,
3IMX, 3AOI, 3GOI, 3FRO, 3F9M, 1V4S and 1V4T). However, crys-
tallographic structures are restricted by limited resolution [9],
crystallization-related artifacts of the ligand–protein complex [10]
and negligence of protein anisotropic motion and conformational
substrates [11].

The continuous interest in designing new GK activators,
combined with problems of crystallographic structures and the
induced-fit flexibility documented for GK [3,7,12] encouraged
us to investigate the prospects of producing ligand-based phar-
macophore(s) incorporated within quantitative structure–activity
(QSAR) equation. This combination is independent of the struc-
ture of the binding site and thus should avoid the downsides of
structure-based methodologies; furthermore, the resulting phar-
macophore(s) can be used as search query(ies) for exploration of
new GK activators.

We  previously reported the use of this interesting methodology
toward the discovery of new leads for glycogen synthase kinase
3� [13], hormone sensitive lipase [14], bacterial MurF [15], pro-
tein tyrosine phosphatase1B [16], influenza neuraminidase [17],
�-secretase [18], CDK1 [19], cholesteryl ester transfer protein [20],
and �-d-galactosidase [21].

Our computational workflow started by generating many
reasonable pharmacophores for a list GK activators using
CATALYST-HYPOGEN [22]. Subsequently, genetic algorithm (GFA)
coupled with multiple linear regression (MLR) were implemented
to search for optimal quantitative structure–activity relationship
(QSAR) that combine high-quality binding pharmacophore with
other molecular descriptors that can explain bioactivity variation
across the collected list of GK activators. The QSAR-selected phar-
macophore was validated using receiver operating characteristic
(ROC) curve analysis, and was subsequently employed to mine the
national cancer institute’s (NCI) compound database for new GK
activators. Captured hits were evaluated in vitro.

2. Materials and methods

2.1. Molecular modeling

2.1.1. Software and hardware
Pharmacophore and QSAR modeling studies were performed

using CATALYST (HYPOGEN module, version 4.11, from Accelrys,
USA), CERIUS2 (version 4.10, from Accelrys, USA) and Discov-
ery Studio (version 2.5.5, from Accelrys, USA) software suites.

The chemical structures were drawn using ChemDraw Ultra 7.0
(Cambridge Soft Corp., USA).

2.1.2. Data set and conformational analysis
The structures of 30 GK activators (Table 1) were collected from

the literature [23a,23b]. Their in vitro bioactivities were expressed
as concentrations that activated GK by 50% (EC50). Table 1 shows
the collected structures and their corresponding EC50 values. The
logarithm of EC50 (�M)  values were used in modeling to correlate
data linearly to the free energy change. However, in cases where
EC50 values were expressed as being >10 �M (e.g., 2–6,  8 and 10)
they were assumed to be 200 �M to maintain 4 log cycles differ-
ence from the most potent compound (28, EC50 = 0.02 �M).  This
bioactivity spread is essential requirement for CATALYST pharma-
cophore modeling [22,24]. The logarithmic transformation of EC50
values is expected to reduce any possible errors resulting from this
supposition.

The chemical structures of the activators were drawn and saved
as mol  files. Then, they were converted into corresponding 3D
structures and minimized to the closest local energy minima using
the CHARMm force field within CATALYST. The resulting 3D con-
formers were utilized as starting points for conformational analysis.

The conformational surface of each activator (1–30, Table 1)
was explored using the CHARMm force field implemented within
CATALYST via the “best conformer generation” option. Conforma-
tional ensembles were generated for each training compound with
energy threshold of 20 kcal/mol from the closest local minimum
with a maximum limit of 250 conformers per molecule. The con-
formation search procedure implements a “poling algorithm” that
penalizes closely related conformers to avoid entrapment in certain
local minimum during conformational sampling [22], which endan-
ger pharmacophore generation and subsequent in silico screening
[25].

2.1.3. Pharmacophoric hypotheses generation
The training compounds (30 molecules) together with their

associated conformational models were listed into a single spread-
sheet with their EC50 values combined with an “Uncertainty” of
3. This value assumes that the actual EC50 value of any activator
is situated somewhere in an interval ranging from one-third to
three-times the reported EC50 value [24b–d].

A structurally diverse training subset (Table 2) was  selected
for pharmacophore exploration through four modeling runs, as
in Table 3. Different pharmacophores were produced by changing
the interfeature spacing and the count of permissible features in
the resulting models (Table 3). Section SM-1 under Supplementary
Materials describes how CATALYST-HYPOGEN generates pharma-
cophoric models [24b–d]. Ultimately, our exploration efforts (4
automatic runs, Tables 2 and 3) yielded 40 binding models of vari-
able qualities.
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