Review of arsenic contamination, exposure through water and food and low cost mitigation options for rural areas

Anitha K. Sharma a,*, Jens Chr. Tjell a, Jens J. Sloth b, Peter E. Holm c

a Technical University of Denmark, Department of Environmental Engineering (DTU-Environment), Miljøvej, DK-2800 Lyngby, Denmark
b Technical University of Denmark, National Food Institute, Division of Food Chemistry (DTU-Food), Marketøj Bygade 19, DK-2860 Søborg, Denmark
c University of Copenhagen, Faculty of Science (SCIENCE), Department of Plant and Environmental Sciences, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark

A R T I C L E I N F O

Article history:
Received 16 May 2013
Accepted 23 November 2013
Available online 3 December 2013
Editorial handling by Huaming Guo

A B S T R A C T

Arsenic (As) is a toxic metalloid found to be an important groundwater contaminant of mainly natural geogenic origin worldwide particularly in large deltas and along major rivers in poor regions of South- and East-Asia. Excessive and long-term human intake of toxic inorganic As with food and water is causing arsenicosis, which is disfiguring, disabling, and leading to potentially fatal diseases like skin- and internal cancers. It is estimated that more than 100 million people mainly in developing countries are at risk. The arsenicosis situation in affected countries has been named the largest chemical threat to public health ever experienced and arsenicosis is spreading to regions where near-sterile well water loaded with As has replaced microbial suspect surface water containing lower As concentrations. This review provides an overview of the state of the art knowledge on the water and food As intake and exposure, and how the As chemistry in water and food may influence chosen mitigation strategies. Although reports on severe health effects from exposure to As in water are abundant there are several weak points in our knowledge on causes and prevalence of arsenicosis in order to devise effective mitigation. The main mitigation strategies focus on drinking water based on exploration of As-free water and As removal from extracted water, whereas mitigation strategies on cooking water and reducing exposure through food are quite often overlooked. The experiences of adopted low cost methods for lowering the human intake of As in rural areas are critically evaluated in terms of public acceptance, sustainability and impact on arsenicosis.

© 2013 Elsevier Ltd. All rights reserved.

Contents

1. Introduction ... 12
2. Chronic As toxicity, guideline values and estimated exposure in rural regions .. 13
 2.1. As toxicity and bioavailability ... 13
 2.2. Setting guidelines for human intake of As .. 14
2.3. Relative importance of As exposure with water and food in rural regions with elevated As concentrations 15
3. As in groundwater .. 15
 3.1. World distribution of groundwater As and arsenicosis ... 16
 3.2. Sources and causes for release of As to groundwater ... 16
4. Mitigation options for water .. 16
 4.1. Alternative As free water sources .. 17
 4.1.1. Deep groundwater .. 17
 4.1.2. Shallow groundwater (well switching) .. 17
 4.1.3. Dug well water ... 18
 4.1.4. Surface water .. 18
 4.1.5. Rainwater harvesting .. 19
 4.2. Removal of As ... 19
 4.2.1. Removal with naturally occurring iron and sand filtration 19
 4.2.2. Removal with naturally occurring iron and enhanced oxidation 20
 4.2.3. Removal of As using oxidation and coagulation .. 20

* Corresponding author. Tel.: +45 45251590.
E-mail address: akush@env.dtu.dk (A.K. Sharma).

0883-2927/$ - see front matter © 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.apgeochem.2013.11.012
1. Introduction

This review deals with the relevant technical and societal options employed for relieving and preventing high human exposure of Arsenic (As) through water and food in poor rural regions of the world contaminated with As in groundwater and soils. High natural concentrations of As in groundwater combined with the installation of several millions of tube wells mainly in South and East Asia has inadvertently led to one of the most serious environmental health problems in history (World Bank, 2005a,b). Excessive and long-term (such as 5–10 years) human intake of toxic inorganic As may cause arsenicism, which is a common term used for As related health effects including skin problems, skin cancers, internal cancers (bladder, kidney, lung), diseases of the blood vessels of the legs and feet, and possibly diabetes, high blood pressure and reproductive disorders (WHO, 2010). This shift is and was often spurred by the interplay of increased awareness of the problem, new technologies for removing As from drinking water, and the increasing publication frequency since 1990 (Table 1).

Incidences of arsenicism have been reported since 1885 with the first major incidence of naturally caused arsenicism reported from Argentina in 1938 (cited from Mukherjee et al., 2006). As exposure in Taiwan in the 1960s also became well known (Tseng et al., 1968). However, as shown in Table 1 it was only in the late 1990s that As in groundwater was identified as the major cause of wide-scale As related health problems in the Bengal delta (Bangladesh and West Bengal in India). Arsenicism is spreading to regions where near sterile groundwater containing As has replaced microbiologically suspect surface water with lower As concentrations (e.g. WHO, 2010). This shift is and was often spurred by the international aid agencies in the global effort to improve the health situation through improved water supply and sanitation in rural areas in developing countries. After recognising the unfortunate situation, many governments are assisted by international aid agencies and international organisations like the WHO, UNICEF and World Bank in attempts to mitigate the As problem primarily by finding alternative sources of drinking water and/or removal of As from drinking water. The global extent and severity of appearing arsenicism is probably not yet fully revealed. Overwhelming evidence of non-occupational chronic As exposure to As through ingestion of drinking water with high As concentrations has been

| Table 1 |
| Numbers of As related articles published in international peer reviewed articles based on search results from Web of Science (Thomson Reuters, September 2013). |

<table>
<thead>
<tr>
<th>Arsenic related topic</th>
<th>Published articles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic & groundwater</td>
<td>15</td>
</tr>
<tr>
<td>Arsenic & Bangladesh</td>
<td>0</td>
</tr>
<tr>
<td>Arsenic & food</td>
<td>64</td>
</tr>
<tr>
<td>Arsenic & mitigation</td>
<td>0</td>
</tr>
<tr>
<td>Arsenic & water & removal</td>
<td>20</td>
</tr>
</tbody>
</table>
Download English Version:

Download Persian Version:

https://daneshyari.com/article/4435862

Daneshyari.com