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1. Introduction

The function of a protein is largely defined by the nature of the
molecules it interacts with. Therefore the prediction of protein
binding sites and their characterization remain important goals for
the biologist. The number of known structures of proteins has
grown rapidly in recent years [1] and a large number of protein–
ligand interaction sites remain uncharacterized [2]. A number of
approaches have been developed to make predictions about the
function of a protein from its structure [3]. Some of these methods
look for motifs or domains associated with specific functions [3],
others look for characteristic arrangement of functionally impor-
tant or conserved residues [4]. The function of a protein depends
upon the nature of ligands it can interact with, hence demarcation
of the ligand binding sites and identification of the type of ligands it
can bind is important for the assignment of function to the protein
structure as well as for rational structure-based drug design.

Non-covalent carbohydrate binding proteins play an important
role in cellular processes. Carbohydrates are involved in energy
flow, cellular recognition and adhesion [5]. Carbohydrate binding
proteins are however very diverse in structure and function [6].
They are increasingly being considered as putative drug targets
because of their role in intra- and inter-cellular communication [6].
Experimentally carbohydrate binding sites have been extensively
studied in the past [7]. However, only a few approaches have been
developed for the prediction of carbohydrate binding sites from
structure [8–10]. Taroni et al. ranked the surface patches on the
basis of the average propensity of the patch residues to bind
carbohydrates. The patches having an average propensity score
above a specific threshold were considered as carbohydrate
binders. This method was tested on two datasets. The first test
set (comprising of 3 lectins and 4 enzymes) consisted of proteins
non-homologous to the training dataset whereas the members of
second dataset (19 enzymes and 14 lectins) were homologous
to the training dataset. The method was 89% successful for
identification of the carbohydrate binding sites in the homologous
enzymes whilst the method correctly predicted 29% of cases in the
homologous lectins. Shionyu-Mitsuyama et al. developed a set of
rules from a dataset of 80 protein–carbohydrate binding sites that
depicted the probable positions of carbohydrate-interacting
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A B S T R A C T

Carbohydrate binding sites are considered important for cellular recognition and adhesion and are

important targets for drug design. In this paper we present a new method called InCa-SiteFinder for

predicting non-covalent inositol and carbohydrate binding sites on the surface of protein structures. It

uses the van der Waals energy of a protein–probe interaction and amino acid propensities to locate and

predict carbohydrate binding sites. The protein surface is searched for continuous volume envelopes that

correspond to a favorable protein–probe interaction. These volumes are subsequently analyzed to

demarcate regions of high cumulative propensity for binding a carbohydrate moiety based on calculated

amino acid propensity scores.

InCa-SiteFinder1 was tested on an independent test set of 80 protein–ligand complexes. It efficiently

identifies carbohydrate binding sites with high specificity and sensitivity. It was also tested on a second

test set of 80 protein–ligand complexes containing 40 known carbohydrate binders (having 40

carbohydrate binding sites) and 40 known drug-like compound binders (having 58 known drug-like

compound binding sites) for the prediction of the location of the carbohydrate binding sites and to

distinguish these from the drug-like compound binding sites. At 73% sensitivity the method showed 98%

specificity. Almost all of the carbohydrate and drug-like compound binding sites were correctly

identified with an overall error rate of 12%.
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protein atoms. Using a set of 10 atom types they created a three-
dimensional probability density map wherein each point on this
map represented the probability of occurrence of a protein atom
which could interact with a carbohydrate. Using these interaction
maps they predicted the carbohydrate binding sites with a success
rate of 66% and 50% in enzymes and lectins, respectively. Malik
et al. trained a neural network using amino acid propensities for
the prediction of carbohydrate binding sites. The training set
comprised of 40 protein–carbohydrate complexes and the level of
redundancy was reduced by removing protein sequences with
more than 50% sequence identity. This method achieved only 23%
specificity at 87% sensitivity.

Here the development of a new computational method for
predicting carbohydrate binding sites is presented. The overall aim
was to develop a new computational method for predicting
carbohydrate binding sites with high sensitivity and specificity.
The method differs from the previous carbohydrate binding site
prediction methods in two important aspects. Firstly it uses 375
non-covalent protein–carbohydrate complexes for the derivation
of amino acid propensity scores, which is more than that used in
the previous studies. Secondly it uses a two-step procedure to
identify sites. In step one; it uses an energetic grid-based approach
to identify putative sites on the protein with a high probability of
being a binding site, using the method of Laurie and Jackson [2]. In
step two; it uses these sites and amino acid propensity scores to
predict the location of carbohydrate binding sites. The aim of
developing InCa-SiteFinder was to produce a method that could
perform two functions: (1) locate likely ligand binding sites and (2)
distinguish the nature of the binding site, to ascertain if the site can
preferentially bind a carbohydrate ligand.

2. Methods

2.1. Construction of dataset for propensity calculation

Nearly 30,000 protein–ligand complexes present in PDBSUM
[11–13] with structural information were extracted from the PDB
[14]. Of these only protein–carbohydrate complexes having
experimentally determined X-ray crystal structures with a
resolution greater than 2.5 Å were retained. In addition, complexes
were further removed if they had either: a covalently bound
ligand; involved a drug-like compound ligand; had metallic ions;
or had no classification in SCOP (version 1.69) [15]. A ligand was
classified as non-covalently bound to the protein if none of its
atoms were within the covalent interaction distance (see
supporting information). The covalent interaction distance for a
specific protein and ligand atom pair was the sum of their atomic
radii plus a 10% tolerance limit.

A non-redundant dataset was constructed by considering the
protein chain/s (containing a domain) with a bound carbohydrate
ligand for each SCOP superfamily representative. The SCOP
domain code is unique at the superfamily level in the carbohy-
drate binding domain for each entry and the best resolution
structural representative was chosen. Thus the final dataset
comprised a non-redundant dataset (NRD) with only one
carbohydrate representative for each SCOP superfamily. Hydro-
gen atoms were added to these protein–carbohydrate complexes
using the QuacPac software (OpenEye).

2.2. Calculation of amino acid propensities

For a non-redundant database of over 375 protein–carbohy-
drate complexes, propensities for a given amino acid to occur in a
carbohydrate binding sites were calculated as the ratio of its
relative contribution to the carbohydrate binding site area to its
relative contribution to the complete protein surface area. The area

contributed by an amino acid, i, to the carbohydrate binding site
was considered as the difference in its solvent accessible surface
area between the carbohydrate bound and unbound states. The
propensity of an amino acid, i, to occur in a carbohydrate binding
site ðPCBP

i Þ and drug-like compound binding site ðPDBP
i Þ are given by:

PCBP
i ¼

DSASACBS
i =

P20
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j
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j¼1 SASA j

(1)

PDBP
i ¼

DSASADBS
i =
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j
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where DSASACBS
i is the solvent accessible surface area of amino acid

i buried in the carbohydrate bound state.
P

DSASACBS
i is the total

solvent accessible surface area of all amino acids buried in
carbohydrate bound complexes. DSASADBS

i is the solvent accessible
surface area of amino acid i buried in the drug-like ligand bound
state.

P
DSASADBS

i is the total solvent accessible surface area of all
amino acids buried in drug-like ligand bound complexes. SASAi is
the solvent accessible surface area contributed by a specific amino
acid i to the protein surface.

P
SASAi is the total solvent accessible

surface area of all amino acids of the protein. For comparison the
amino acid propensities of drug-like compound binding sites were
also determined in the same way. These were calculated from a
nonredundant database of 358 complexes of protein–drug-like
compounds. The ligands were considered as drug-like if they
conformed to Lipinski’s rule of 5 [16] and did not contain a
carbohydrate moiety.

2.3. InCa-SiteFinder

The process of calculating the protein–probe van der Waals
interaction energy is described in detail in Laurie and Jackson [2].
Briefly, the protein atoms are placed in a three-dimensional box,
which is divided into a cubic grid of resolution 0.9 Å. Using
the program Liggrid the van der Waals energy of interaction is
calculated between the protein and a methylene (–CH3) probe placed
at each grid point. The energy is calculated using the GRID force-
field parameters as described in Ref. [17]. Grid points with
a ‘‘protein–probe interaction’’ energy more favorable (negative)
than a predetermined threshold are retained (Fig. 1). For these grid

Fig. 1. An initial van der Waals energy cut-off is used to retain grid points in

energetically favorable binding regions (small filled circles). A carbohydrate binding

site occurrence propensity score cut-off is used to remove grid points in regions of

low CBP score (small grey circles). Neighbouring favorable propensity score grid

points are finally clustered to form the predicted sites (lines).
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