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h i g h l i g h t s

< A sequential factorial analysis was proposed to examine the effects of uncertainty.
< Influence of a number of factors of interest was studied in a systematic manner.
< A factor-screening strategy was used to reduce the computational effort.
< Interactive effects of parameters and constraints on model outputs were analyzed.
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a b s t r a c t

This study proposes a sequential factorial analysis (SFA) approach for supporting regional air quality
management under uncertainty. SFA is capable not only of examining the interactive effects of input
parameters, but also of analyzing the effects of constraints. When there are too many factors involved in
practical applications, SFA has the advantage of conducting a sequence of factorial analyses for charac-
terizing the effects of factors in a systematic manner. The factor-screening strategy employed in SFA is
effective in greatly reducing the computational effort. The proposed SFA approach is applied to a regional
air quality management problem for demonstrating its applicability. The results indicate that the effects
of factors are evaluated quantitatively, which can help decision makers identify the key factors that have
significant influence on system performance and explore the valuable information that may be veiled
beneath their interrelationships.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Regional air pollution has been a major environmental concern,
since it poses a serious threat to human health (Liu et al., 2003). On
a global basis, World Health Organization (WHO) estimates that
almost 800,000 people die prematurely every year due to air
pollution (WHO, 2002). Air pollution is not only a problem of public
health; the harmful effects of pollution in materials and environ-
ment are also considerable. Therefore, control measures need to be
taken to mitigate air pollution. However, an air pollution control
system involves many components, such as pollutant emission
standards and pollutant treatment efficiencies; these components
may be associated with uncertainties. Advanced optimization
methods are thus desired for supporting air quality management
and pollution control planning under uncertainty.

Over the past decades, a number of inexact optimization
methods were developed for dealing with uncertainties in air

pollution control systems (Ellis et al., 1985, 1986; Li et al., 2006; An
and Eheart, 2007; Lu et al., 2010; Qin et al., 2010). These methods
can hardly reveal the interactive effects of uncertainties on system
performance, even though they are capable of tackling uncer-
tainties that exist in various forms (e.g., interval numbers, fuzzy
sets, and probability distributions). In fact, uncertain parameters
are not independent of each other; they interact in different ways.
The potential interactions among parameters may greatly influence
the performance of air pollution control systems. Therefore, the
interactive effects of parameters should not be neglected or
underestimated in practical applications.

Previously, factorial analysis was widely used to reflect the
potential interrelationships among uncertain parameters and their
impacts on system performance. Maqsood et al. (2003) conducted
a set of 24 factorial experiments for quantitatively analyzing the
combined effects of four uncertain input parameters on modeling
outputs; for each factorial experiment, a 100-run Monte Carlo
simulation was undertaken through a multiphase compositional
simulator. Lin et al. (2008) proposed a simulation-aided 2-level
factorial analysis approach for characterizing the interactive
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effects of composting factors on composting processes. Qin et al.
(2008) developed a factorial-design-based stochastic modeling
system (FSMS) to investigate the impacts of uncertainties associ-
ated with hydrocarbon-contamination transport in subsurface.
Mabilia et al. (2010) performed an experimental test according
to a fractional factorial design with replicated central point,
which identified the best configuration for a formaldehyde passive
sampler by statistically evaluating the significance of effects of
factors and their interactions. Onsekizoglu et al. (2010) used a two-
level factorial experimental design for evaluating the effects of
temperature difference between the feed and permeate side of
the membrane, concentration of the osmotic agent and flow rate.
Zhou and Huang (2011) proposed a factorial two-stage stochastic
programming (FTSP) approach for supporting water resources
management under uncertainty. Previous studies focus on the
investigation of the effects of parameters. In optimization prob-
lems, however, constraints may also have a considerable influence
on model outputs. Their effects are as important as those of input
parameters, and should be analyzed thoroughly. On the other hand,
it is unwise to carry out a single, large, and comprehensive exper-
imental design when there are too many factors involved in prac-
tical applications. One single design is unlikely to answer all the
questions adequately. One potential solution is to conduct
a sequence of factorial analyses for examining the effects of factors
in a systematic manner.

The objective of this study is to propose a sequential factorial
analysis (SFA) approach for supporting air quality management and
pollution control planning under uncertainty. SFA can not only
investigate the interactive effects of input parameters, but also
analyze the effects of constraints. Moreover, SFA has the advantage
of conducting a series of factorial analyses to examine the effects of
parameters and constraints in a systematic manner. The proposed
SFA approach will be applied to a regional air quality management
problem for demonstrating its applicability. The findings will help
decision makers identify the key parameters, constraints, and their
interactions that have a significant influence on system perfor-
mance, which plays an important role in the decision-making
process.

2. Methodology

Firstly, consider a linear programming (LP) problem as follows:

Min f ¼ CX (1a)

subject to:

AX � B (1b)

X � 0 (1c)

where C ¼ (c1, c2, ., cn), A ¼ ðaijÞm�n, and B ¼ (b1, b2, ., bm)T

represent the parameters in the objective function and constraints;
X ¼ (x1, x2, ., xn)T is the vector of decision variables. Constraints
(1b) can be converted from inequalities to equalities through
introducing non-negative slack variables to the left-hand side of
the constraints. Model (1) can then be rewritten into the following
form:

Min f ¼ CX (2a)

subject to:

AX þ S ¼ B (2b)

X � 0 (2c)

S � 0 (2d)

where S ¼ (s1, s2, ., sm)T represents the vector of the newly
introduced slack variables that measure the unused amounts of
constrained resources. If a slack variable equals 0, it implies that all
resources will be used in order to achieve the minimized objective.
The larger a slack variable, the higher the amount of slack
resources. A variety of uncertainties are inherent in future-oriented
planning efforts, which have different impacts on model response.
Thus it is necessary to conduct a systematic analysis of uncer-
tainties. Sensitivity analysis (also called post-optimally analysis) is
used extensively in practice; it is performed by varying one
parameter over its range with the other parameters held constant.
Such a one-parameter-at-a-time approach can only reflect the
single effects of parameters, while it fails to consider any possible
interaction among them. In fact, joint effects exist among many
parameters, which may greatly influence system performance.
Therefore, they should not be neglected or underestimated.

Factorial analysis, a multivariate inference method, can thus be
introduced to reveal the potential interrelationships among factors
and their impacts on system performance (Box et al., 1978). The
most important case of factorial analysis is 2k factorial designwhich
consists of k factors with each at two levels. The statistical model
for a complete 2k designwould include 2ke1 effects that comprise k

main effects, ð k2 Þ two-factor interactions, ð k3 Þ three-factor inter-

actions, ., and one k-factor interaction (Montgomery, 2001). To
estimate an effect or to compute the sum of squares for an effect,
the contrast associated with that effect needs to be determined by
expanding the right-hand side

ContrastAB,,,K ¼ ða� 1Þðb� 1Þ,,,ðk� 1Þ (3)

where the sign in each set of parentheses is negative if the factor is
included in the effect and positive if the factor is not included; “1”
needs to be replaced by (1) that denotes all factors at their low
levels when expanding Eq. (3); the high level of a factor is repre-
sented by its lowercase letter and the low level of a factor is
denoted by the absence of its letter in the treatment combination.
Once the contrasts for the effects are determined, the effects and
the sum of squares can be estimated according to:

l AB,,,K ¼ 2ðContrastAB,,,KÞ
n2k

(4)

and

SSAB,,,K ¼ ðContrastAB,,,KÞ2
n2k

(5)

where l AB,,,K is the single or joint effects of factors; SSAB,,,K is the
sum of squares for the effects; n denotes the number of replicates.

A 2k factorial design requires 2 � 2 � $$$ � 2 ¼ 2k runs. As the
number of factors in a 2k factorial design increases, the number of
runs required for a complete design increases exponentially,
resulting in a great computational burden. In fact, most systems are
dominated by main effects and low-order interactions, and most
high-order interactions are negligible (Montgomery, 2001).
Therefore, fractional factorial design can be introduced to expose
the information on main effects and low-order interactions by
running only a fraction of runs of the full factorial design. A 2k

fractional factorial design containing 2k�p runs is called a 2k�p

fractional factorial design, which requires the selection of p inde-
pendent generators based on a criterion that the best possible alias
relationships can be obtained (Montgomery, 2001). In other words,
care should be taken to ensure that the effects of potential interest
are not aliased with each other when choosing the generators. The
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