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h i g h l i g h t s

< An algorithm for navigation of UAVs tracking atmospheric release is pro-posed.
< Dynamics of the release is unknown and estimated on-line on a fine time scale.
< Time varying biases of the numerical weather forecast are estimated.
< Assimilation methodology is based on the sequential Monte Carlo.
< Twin experiments performed on a release of radiation with realistic setting.
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a b s t r a c t

Tracking of an atmospheric release of pollution is usually based on measurements provided by stationary
networks, occasionally complemented with deployment of mobile sensors. In this paper, we extend the
existing concept to the case where the sensors are carried onboard of unmanned aerial vehicles (UAVs).
The decision theoretic framework is used to design an unsupervised algorithm that navigates the UAVs to
minimize the selected loss function. A particle filter with a problem-tailored proposal function was used
as the underlying data assimilation procedure.

A range of simulated twin experiments was performed on the problem of tracking an accidental
release of radiation from a nuclear power plant in realistic settings. The main uncertainty was in the
released activity and in parametric bias of the numerical weather forecast. It was shown that the UAVs
can complement the existing stationary network to improve the accuracy of data assimilation. Moreover,
two autonomously navigated UAVs alone were shown to provide assimilation results comparable to
those obtained using the stationary network with more than thirty sensors.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Accidental release of a pollutant into the atmosphere is a rare
event, however with severe consequences for potentially many
people living in proximity of its source. Correct application of the
protective measures requires the best possible knowledge about
the source and the trajectory of the plume in the atmosphere. Since
dispersion of the pollutant in the atmosphere is highly stochastic,
every measurement is of a great value. This fact motivated the
creation of stable monitoring networks, e.g. around nuclear power
plants, and stable and mobile stations for general air quality
monitoring that are routinely in operation. The use of airborne
measuring stations is less frequent, they are typically assumed to be
used only in cases of severe accidents. Since it is too risky to send
human-operated aircrafts into the polluted area, these are assumed
to be used in the post-accident analysis.With increasing availability

of commercial unmanned aerial vehicles (UAVs) arises the question
of their use in tracking of accidental atmospheric releases.

In principle, the UAVs have several important advantages. First,
they can fly in three dimensional space without spatial restrictions,
which contrasts with limits of road vehicles. Second, they can be
relatively small and thus they can be deployed in a very short time.
Third, as unmanned vehicles they can fly to dangerous zones.
Fourth, their movement in the atmosphere is relative to the wind
which provides (in combination with GPS) an additional source of
information about the wind field.

In this paper, we study the advantages of using UAVs in tracking
of an atmospheric release. This task has been considered before
using expert system with manually selected rules (Kuroki et al.,
2010). Here, we are concerned with fully automatic on-line navi-
gation of the UAVs. We study two potential roles of UAVs: operation
in a standalone mode, and operation as a complementary
measurements to the existing monitoring networks. Operation in
the complementary mode is possible in high profile applications
such as radiation accidents, while the standalone mode may be
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interesting for less safety critical applications, such as chemical
accidents.

From themethodological point of view, UAVs aremobile sensors
that can be relocated at every sampling time. Their navigation is
thus an extension of the task of a monitoring network designwhich
has been studied for decades, from early works (Caselton and
Husain, 1980) to recent ones (Abida and Bocquet, 2009;
Heuvelink et al., 2010). The standard formalism for sensor posi-
tioning is the decision theory under uncertainty (Berger, 1985) that
poses the task as a minimization problem with respect to the ex-
pected future loss function. Previously proposed approaches differ
in three aspects: (i) representation of uncertainty, (ii) loss function,
and (iii) optimization methods and constraints. The need for
uncertainty representation limits the possible selection of the
assimilation methodology. For example, traditional methods like
point based estimates such as the variational (Jeong et al., 2005;
Kovalets et al., 2009) or genetic approach (Haupt et al., 2009;
Cervone et al., 2010) are not a natural choice. We need to choose
from the methods that model uncertainty using a Gaussian density
(Zidek et al., 2000; Abida and Bocquet, 2009), or an empirical
density obtained by Monte Carlo trials (Heuvelink et al., 2010;
Melles et al., 2011). The choice of the loss functions ranged from
entropy (Zidek et al., 2000) to the number of misclassified people
(Heuvelink et al., 2010). Since most authors aimed for the global
optimum, the most popular choice of the optimization method was
simulated annealing, e.g. (Abida et al., 2008; Melles et al., 2011).

A distinct feature of the UAVs as mobile sensors is the need to
compute their new locations in real time. This puts practical
constraints on the processing time of all elements of themethod. As
a first step, we relax the requirement of global optimality and seek
only a suboptimal solution. We choose to represent the uncertainty
via the weighted empirical density, which is provided by the
particle filter (Pecha et al., 2009; Hiemstra et al., 2011). We combine
both popular loss functions, i.e. the mutual information and the
misclassification loss, into a single loss function for improved
robustness and flexibility. Computational details of this approach
are based onworks from the field of UAV navigation (Skoglar, 2009;
Hoffmann and Tomlin, 2010; �Smídl and Hofman, 2012b) and recent
techniques for efficient Monte Carlo sampling (�Smídl and Hofman,
2012a).

The algorithms were tested in simulated twin experiments.
Specifically, we simulate a release of a radioactive pollutant from
a nuclear power plant, where the radiation monitoring network
(RMN), also known as radionuclide monitoring network, is already
in place. In this scenario, we investigate the added value of the
UAVs as a complementary means of radiation situation assessment.
For comparison, we also investigate the same release without the
data from the RMN to investigate the value of UAVs for tracking of
releases from less protected sources.

2. Theoretical background

Navigation of the UAVs will be formalized as the task of posi-
tioning J sensors, where J is the number of available UAVs. At each
time step t, we seek new directions of flight of all UAVs,
v1,tþ1,.,vJ,tþ1, and their speeds s1,tþ1,.,sJ,tþ1. These form the action
variable atþ1 ¼ [v1,tþ1,.,vJ,tþ1,s1,tþ1,.,sJ,tþ1]. Following the standard
decision theory (Berger, 1985), we optimize the expected loss

a�tþ1 ¼ arg min
atþ1˛Atþ1

EðLðxt:tþh;atþ1:tþhÞjy1:tÞ; (1)

where xt:tþh ¼ [xt,.,xtþh] is the uncertain future trajectory of the
state variable, xt;Lðx;aÞ is the loss functionmapping the space of all
actions and states to the real axis; y1:t ¼ [y1,.,yt] are the measured

data; Eð$Þ is the operator of expected value with respect to a prob-
ability density function pð$Þ of the random variable in argument of
the expectation; Atþ1 is a set of all possible actions at time t þ 1.

Framework (1) is very common in the field of network design
and targeting of observations. Different methods arise for different
choices of the unknown state variable xt, representation of uncer-
tainty in the form of probability density pð$Þ, and the loss function
Lð$Þ. In this paper, we will focus on the following variants. Distri-
bution of the pollutant in the atmosphere is described by a para-
metric atmospheric dispersion model (e.g. the puff model) with
unknown parameters. The weather model is based on local
correction of the numerical weather forecast model. The state
variable xt is then quite low dimensional, composed of the
parameters of the dispersion model and the weather corrections.
The uncertainty in all parameters is represented by empirical
probability densities (Johannesson et al., 2004). The loss function is
based on combination of the misclassification loss (Heuvelink et al.,
2010) and the mutual information (Hoffmann and Tomlin, 2010).
These elements are now described in detail.

2.1. Atmospheric dispersion model

When the pollutant is released into the atmosphere, it forms
a plume which is subject to dispersion. Various parametric models
of the pollutant dispersion have been proposed. Here, we focus on
approximation of the continuous plume by a collection of puffs
(Thykier-Nielsen et al., 1999) for its simplicity. However, no
subsequent derivation is based on this assumption and it can be
replaced by any other parametric dispersion model. The puff model
is formed by a sequence of puffs labeled k ¼ 1;.;K , each puff is
assumed to approximate a short period of the release of the
pollutant at discrete time t. Concentration of the pollutant in
a single puff at time s is given by:

Ckðs;sÞ ¼
Qk

ð2pÞ3=2s1s2s3
exp
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where s ¼ [s1,s2,s3] is a vector of spatial coordinates,
lk,s ¼ [l1,k,s,l2,k,s,l3,k,s] is the vector of location of the kth puff center,
s ¼ [s1,s2,s3] are dispersion coefficients, and Qk is the released
activity in the kth puff. Released activity Qk is assumed to be
unknown, with very flat prior density, e.g. of gamma type

G�aQ ; bQ �fQaQ�1
t exp

��QtbQ
�
; (3)

with parameters aQ,bQ. Symbol f denotes equality up to normal-
izing constant. The prior parameters can be designed to match
apriori chosen moments, e.g. the mean value, aQ/bQ, and the vari-
ance, aQ=b

2
Q .

Illustration of the pollution model is displayed in Fig. 1. Spatial
distribution of the pollutant is then fully determined by state
variables:

xpm;t ¼ �
l1;t.lK;t ;Q1;t ;.QK;t ;s1;t ;.sK;t

�
: (4)

2.2. Wind field model

We assume that the pollutant is released from a source at
known location, [s1,pp,s2,pp] and known altitude s3,pp, in vector
notation, spp ¼ [s1,pp,s2,pp,s3,pp]. From this point it is advected by the
wind field. While it is possible to obtain numerical weather forecast
from various sources, its accuracy is usually not sufficient at the
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