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Abstract

We present here a neural networks method designed to predict biological activity based on a local representation of the ligand. The compounds

of the series are represented by a vector mapping for each of four substituent properties: volume, log P, dipole moment and a simple ‘steric’

parameter relating to its shape. This ligand representation was tested using neural networks on a set of 42 cyclic-urea derivatives, inhibiting HIV-1

protease. The leave-one-out cross-validation using all descriptors in the input gave a correlation factor between prediction and experiment of 0.76

for the overall set and 0.88 when three outliers were left out. To rank the significance of the four descriptors, we further tested all combinations of

two and three parameters for each substituent, using two disjunctive testing sets of five inhibitors. In these sets, vectors with extreme descriptor

values were used either in the training or the testing set (sets A and B, respectively). The method is a very good interpolator (set A, 95 � 2%

accuracy) but a less effective extrapolator (set B, 85 � 2% accuracy). Generally, the combinations including the ‘steric’ parameter predict better

than average, while those containing the volume are less effective. The best prediction, 98.8 � 1.2%, was obtained when log P, the dipole and the

steric parameter were used on set A. At the opposite end, the lowest ranked descriptor set was obtained when replacing log P with the volume,

giving 92.3 � 6.7% accuracy over the set A.
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1. Introduction

Neural networks (NN) are able to create internal models for

complex input–output relationships based on learning from

examples and therefore are useful in prediction.

In protein science NN were successfully used to predict

secondary structure [1–3] and transmembrane segments [4],

the structural class [5–8] and family [9,10], motifs such as co-

and post-translational modifications [11–13], antigenic seg-

ments [14], signal sequence [15] or intracellular localization

[16,17].

The NN techniques are also suited for quantitative structure–

activity relationship (QSAR) applications because here a set of

compounds with known activities is available for training. In

contrast to simple QSAR methods based on regression analysis,

where one has to priorly assume an input–output relation (e.g.

linear or quadratic function), NN do not require any prior model

of how input and output are connected and have the unique

ability to adapt to highly complex non-linear relations [18–20].

Consequently, the essential features of NN: non-linearity,

adaptivity, independence of any statistical and modelling

assumptions, fault tolerance, universality and real time

operation make them particularly suitable for pharmacokinetic

applications, especially where extremely complex and unfa-

miliar responses are studied [21].

Recent examples include prediction of biological targets for

chemical compounds using probabilistic NN and atom type

descriptors, with 90% accuracy [22], prediction of drug

resistance of HIV-1 protease mutants based on the number

of drug–protein contacts, using Kohonen NN [23], selection of

focussed drug libraries using feed-forward NN and 3D BCUT

descriptors [24], prediction of toxicity of chemicals to aquatic

species [25]. The current state-of-the-art in this field has been

recently reviewed [26].
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The first step in designing a NN is data pre-processing,

which mainly consists in encoding the input information into

an object representation so that this could be processed by the

NN. This is a crucial step as the NN performance critically

depends on how information is presented to the NN. An ideal

encoding scheme should extract maximal information from the

input data and satisfy the basic coding assumption that similar

items are represented by close vectors [27]. In QSAR-like NN

methods, the compounds are usually encoded by molecular

descriptors—physico-chemical parameters that may be either

experimental (e.g. refractive index, octanol/water partition

coefficient or spectral data) or theoretical (e.g. molecular

volume, weight, charge, electronic, lipophilic and steric

properties).

Such a variety of parameters could generate large descriptor

sets that may result either in redundancy of information—when

descriptors are correlated, or chance correlations—when the

dataset contains more descriptors than compounds [28].

Choosing a set of descriptors which is small enough to avoid

redundancy and chance correlation, but large enough to allow

an accurate representation of the ligand is therefore very

important.

In this work we aim at evaluating various representations of

a ligand set, focussed on substituents properties, that may be

used as input in a feed-forward NN for QSAR-like applica-

tions.

The ligand set model chosen to test the method consists of 42

cyclic-urea derivatives with known inhibition constant against

HIV-1 protease (PR). This system is also of practical interest

and lot of data are available in the literature.

Human immunodeficiency virus type 1 (HIV-1) proteins

are translated as part of the larger polyprotein precursor

whose proteolytic processing during virus assembly and

maturation is performed by PR [29–31]. PR is therefore an

essential enzyme for HIV-1 life-cycle and a very attractive

target for new antiviral drugs. The enzyme is a homodimer of

99 amino acids per chain and belong to eukaryotic aspartic

protease family. The dimer has one active site region,

situated at the interface between the two monomers, with one

catalytic triad (Asp-Thr-Gly) from each monomer. The b-

sheet configurations, which include the triplet active site Asp

25/125-Thr 26/126-Gly 27/127 are present in the major part

of the enzyme (amino acids 1–85/101–185), whereas the a-

helix domain is represented by the amino acids 86–99

[32,33]. PR has a high mutagenesis rate, thus being able to

develop strong resistance to inhibitors [34–37]. This

represents a serious problem for the anti-HIV-1 therapy.

Taking into account the possible changes of the inhibitors

structures, fast and precise techniques predicting the

biological activity for new inhibitors are needed. In the last

years the computational techniques as: molecular energy

calculation [38,39], molecular docking techniques [40,41],

molecular dynamics simulations [42–46] or QSAR proce-

dures [47–54] have been useful tools for the study of the PR

mutants and their inhibitors. This NN method is therefore

also complementary to previous studies on interaction of

HIV-1 PR inhibitors with the target enzyme.

2. Methodology

2.1. Molecular modelling of HIV-1 PR inhibitors

The set of 42 HIV-1 PR inhibitors, symmetric (benzyl,

isopropyl, 4-hydroxybenzyl) cyclic-urea derivatives, was

compiled from literature [55]. The criteria used for selection

were: (i) the level of inhibition constants Ki < 0.11 nM and (ii)

the variety of substituents to cyclic urea, covering as many as

possible classes, e.g. methoxybenzyl, aminobenzyl, isobuthyl

and hydroxybenzyl. This resulted in a highly diverse set

(Table 1) in which most of the compounds have high activity.

HIV-1 PR inhibitors were modelled in InsightII, starting from

the cyclic-urea derivative DMP323 [56–58] complexed with

HIV-1 PR (PDB code 1qbs [59]). The common cyclic urea was

kept unchanged and specific substituents were added in R1 and

R2 positions (Fig. 1A). The minimum potential energy

calculations for all inhibitors were performed in Insight/

Discover running conjugate-gradient method, conver-

gence = 0.01. Electric charges of the HIV-1 PR inhibitors

were loaded from InsightII dictionary applying Potentials

within Force Field module.

2.2. Inhibitor parameters calculation

Each molecule is described by a vector whose elements are

parameters measuring physical factors that we considered

important for protein–inhibitor interaction: size (volume V),

hydrophobicity (water/octanol partition coefficient log P),

charge (dipole moment D) and shape (steric factor s). We

introduced also a steric factor to account for the orientation of

structural units relative to a benzene cycle contained in R2. This

was defined as shown in Fig. 1B.

Except the steric factor which was computed only

for R2, all other parameters were computed both for R1

and for R2.

Molecular volume was computed with Tinker [60,61]. The

hydrophobic coefficient (log P) was calculated considering the

Crippen incremental value [62] using Schrodinger software.

This was also used to compute the dipole moment starting form

R1/R2 partial charges.

2.3. Neural networks

The multi-layered feed-forward NN was trained with

Levenberg–Marquardt algorithm [63,64]. Due to the non-

linear input–output dependency the transfer function was

chosen sigmoid. All units were fully interconnected and

the input-to-output information flow was feed-forward (no

feed-back connections). The number of neurons in the input

layer was set equal to the number of dimensions of the input

vectors, while the number of neurons in the output layer

was set equal to 1, i.e. the number of parameters to be

predicted in this case. Based on the finding that two hidden

layers with non-linear neurons are required to approximate

arbitrary functions [65], we used NN having two hidden

layers, each with the number of neurons taking seven
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