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a b s t r a c t

The analysis of the motion of subcellular particles in live cell microscopy images is essential for under-
standing biological processes within cells. For accurate quantification of the particle motion, compensa-
tion of the motion and deformation of the cell nucleus is required. We introduce a non-rigid multi-frame
registration approach for live cell fluorescence microscopy image data. Compared to existing approaches
using pairwise registration, our approach exploits information from multiple consecutive images
simultaneously to improve the registration accuracy. We present three intensity-based variants of the
multi-frame registration approach and we investigate two different temporal weighting schemes. The
approach has been successfully applied to synthetic and live cell microscopy image sequences, and an
experimental comparison with non-rigid pairwise registration has been carried out.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Analyzing the dynamic behavior of subcellular particles based
on live cell microscopy images yields important information about
the underlying biological processes. For example, promyelocytic
leukemia nuclear bodies have been proposed to be involved in
tumor suppression, viral defense, or DNA repair, and the move-
ment of these particles within the cell nucleus is important for
understanding cell function. However, in the images both the
motion and deformation of a cell as well as the motion of particles
within the cell are observed (Fig. 1). To cope with this problem, the
dynamic image sequences need to be registered w.r.t. a reference
time point. Registration yields a mapping of homologous points
of a cell along the sequence of images, which can be used to com-
pensate cell motion and deformation. The registration task can be
quite challenging, for example, for image sequences which depict
cell nuclei going into mitosis (cell division), in particular, during
prophase and prometaphase. During these cell phases, the shape
and the intensity structure of the nucleus are changing strongly
due to, for example, chromatin condensation which causes a
shrinking of the nucleus, nuclear envelope breakdown which
causes a disassembly of the nucleus (cf. Fig. 1) or the disappearance
of internal structures such as the nucleoli.

In previous work, different registration approaches have been
proposed to compensate cell motion and deformation in live cell
microscopy image data. Mostly rigid and affine transformations
have been used comprising translation, rotation, and scaling of
cells. In Rieger et al. (2004), for example, 3D rigid registration of
cell nuclei is performed based on the center of mass and the inten-
sity distribution of labeled proteins. Correlation-based approaches
have been proposed by Wilson and Theriot (2006) for rigid regis-
tration of cells and by Goobic et al. (2005) to compute 2D transla-
tion in intravital video microscopy images of rolling leukocytes.
Sage et al. (2005) described a model-based approach where a
least-squares fit of an ellipse to segmented 2D images of a nucleus
has been used to determine a rigid transformation. Matula et al.
(2006) perform rigid registration of cell images by minimizing
the mean-squared differences between two sets of corresponding
points which represent subcellular structures. De Vos et al.
(2009) described a two-step rigid registration approach for cell
nuclei which uses the correlation coefficient and the geometric
center of telomeric dots. In Dzyubachyk et al. (2010), a shape-
based approach using distance functions is introduced for correc-
tion of affine cell motion in fluorescence microscopy images. For
attenuation measurement and motion correction in live cell FLIP
(fluorescence loss in photobleaching) 2D image sequences, van
de Giessen et al. (2012) proposed a rigid registration approach
based on a photobleaching model. Raza et al. (2012) employed a
block-matching approach to determine translations in static 2D
images from multi-tag fluorescence microscopy stacks.
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In previous work on non-rigid registration of cell nuclei in live
cell microscopy image data, only few approaches have been
described. Mattes et al. (2006), for example, described a land-
mark-based registration approach for cell nuclei using thin-plate
splines. Yang et al. (2008) used an extension of the demons algo-
rithm with symmetric forces to register static images of different
cells as well as live cell microscopy images based on segmented
images. Kim et al. (2011) introduced an intensity-based non-rigid
registration approach for dynamic cell nuclei images which is
based on an extension of the Lucas–Kanade optic flow algorithm.
A contour-based non-rigid registration approach which utilizes
thin-plate splines has been proposed by De Vylder et al. (2011)
for registration of cell nuclei. Non-rigid registration of microscopy
images has been also used in other biological applications. For 3D
reconstruction of static fluorescence confocal microscopy images,
Du and Wasser (2009) introduced an intensity-based non-rigid
registration approach using thin-plate splines, and Hogrebe et al.
(2012) introduced a landmark-based non-rigid registration
approach using B-Splines. For 3D reconstruction of static electron
microscopy images, Akselrod-Ballin et al. (2011) described a
feature-based non-rigid registration approach and Saalfeld et al.
(2012) used a block-matching non-rigid registration approach.
Lorenz et al. (2012) employed intensity-based registration using
B-Splines for 3D reconstruction and reduction of motion-induced
artifacts in intravital images of living animals. To analyze gene
expression data, Tomer et al. (2010) described an intensity-based
approach using B-Splines, and Peng et al. (2011) introduced a land-
mark-based approach using thin-plate splines for non-rigid regis-
tration of static confocal microscopy images. For cell shape
modeling, Rohde et al. (2008) used an intensity-based approach
for non-rigid registration of segmented images of different cell
nuclei, and Yoshizawa et al. (2010) used features from segmented
nuclei and the plasma membrane for interactive non-rigid registra-
tion of microscopy images with different fluorescent markers of
the same cell.

All approaches described above for non-rigid registration of
dynamic cell microscopy images employ pairwise temporal regis-
tration. In pairwise registration, each frame of a sequence is regis-
tered either to a chosen reference frame (reference registration
method) or to the previous frame (consecutive registration method).
For registration of cell nuclei, the consecutive method is preferred
since it can cope better with intensity variations of cell nuclei over
time. Pairwise registration uses only two successive images for reg-
istration. However, to better exploit the temporal information and
improve the registration result it is advantageous to use multiple
images by a multi-frame registration approach.

In medical image analysis, temporal groupwise registration
approaches have recently been proposed, which simultaneously
take into account all images of a dynamic image sequence (e.g.,
Castillo et al., 2010; Metz et al., 2011; Yigitsoy et al., 2011; De
Craene et al., 2012; Wu et al., 2013). Related approaches have been
introduced for analyzing growth patterns of several subjects based

on follow up image data (e.g., Durrleman et al., 2013). However,
there the type of image data as well as the considered objects are
very different compared to our application leading to different
requirements for image analysis approaches. First, in our case we
study fluorescence microscopy image sequences of cells which go
into mitosis (cell division), whereas in medical image analysis
temporal groupwise registration approaches for dynamic data have
been used for MR, CT, and US images of organs (e.g., lung, liver,
heart, brain). Second, another difference is that with temporal
groupwise registration approaches typically periodic movements
are considered, in particular, respiratory movements of the lung
and liver (e.g., Castillo et al., 2010; Metz et al., 2011; Yigitsoy
et al., 2011; Wu et al., 2013) or movements of the beating heart
(e.g., Metz et al., 2011; De Craene et al., 2012). Periodic movement
means that the considered organs periodically return to the same
shape. Thus, an image sequence consists periodically of the same
(or very similar) images. In contrast, in our application we consider
cells that go into mitosis, where the structural differences increase
with time. Thus, the images are increasingly different compared to
the first time point which makes registration generally more diffi-
cult compared to periodic movement. In addition, in medical image
analysis the intensity structure of the considered object is typically
more homogeneous compared to our application where strong
changes of the intensity structure of the cell nucleus occur since,
for example, the nuclear envelope breaks down causing a disassem-
bly of the nucleus, or internal structures such as the nucleolus can
disappear. Because of the non-periodicity and the strong structural
changes in our application, it is not advantageous to compute the
intensity similarity measure between very distant time points
(e.g., between the first and the last time point of an image sequence)
as in temporal groupwise registration approaches. Instead, we
propose a consecutive incremental and multi-frame non-rigid reg-
istration approach where the intensity similarity measure is deter-
mined between time points within a certain time range of an image
sequence. Third, in our application due to the strong changes in
intensity structure and the strong deformations, it is important to
compute the deformation vectors for each pixel of an image. To this
end we use a local differential registration approach. In comparison,
temporal groupwise registration approaches typically use B-spline-
based approaches and image grids that are coarser than one pixel
spacing (e.g., grid spacing of 13� 13� 13 voxel up to 20� 20 pixel
in Metz et al. (2011), grid size of 3� 3� 3 up to 10� 10� 6 control
points in De Craene et al. (2012)), or consider a sparse number of
image points with distinctive features (e.g., Wu et al., 2013), or take
into account a subset of time points of a dynamic image sequence
(e.g., Yigitsoy et al., 2011), while the information at other image
points or time points is obtained by interpolation. Using a subset
of the image information has the advantage that the complexity
of the optimization problem is significantly reduced, however, the
full image information is not exploited. Forth, in our application
we consider a relatively large number of frames of a dynamic
image sequence (100–200 time points). In comparison, temporal
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Fig. 1. Example images from a multi-channel microscopy image sequence (nucleus channel, contrast enhanced).
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