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a b s t r a c t

Modern live imaging technique enables us to observe the internal part of a tissue over time by generating
serial optical images containing spatio-temporal slices of hundreds of tightly packed cells. Automated
tracking of plant and animal cells from such time lapse live-imaging datasets of a developing multicellu-
lar tissue is required for quantitative, high throughput analysis of cell division, migration and cell growth.
In this paper, we present a novel cell tracking method that exploits the tight spatial topology of neigh-
boring cells in a multicellular field as contextual information and combines it with physical features of
individual cells for generating reliable cell lineages. The 2D image slices of multicellular tissues are
modeled as a conditional random field and pairwise cell to cell similarities are obtained by estimating
marginal probability distributions through loopy belief propagation on this CRF. These similarity scores
are further used in a spatio-temporal graph labeling problem to obtain the optimal and feasible set of cor-
respondences between individual cell slices across the 4D image dataset. We present results on (3D + t)
confocal image stacks of Arabidopsis shoot meristem and show that the method is capable of handling
many visual analysis challenges associated with such cell tracking problems, viz. poor feature quality
of individual cells, low SNR in parts of images, variable number of cells across slices and cell division
detection.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

In developmental biology, the causal relationship between cell
growth patterns and gene expression dynamics has been one of
the major topics of interest. A proper quantitative analysis of the
cell growth and division patterns in both the plant and the animal
tissues has remained mostly elusive so far. Information such as
rates and patterns of cell expansion and cell division play a critical
role in understanding morphogenesis in a tissue. The need for
quantifying the cellular parameters such as average rate of cell
divisions, cell cycle lengths, cell growth rates etc. and observing
their time evolution is, therefore, extremely important.

Towards this goal, with the advancements in microscopy and
other imaging techniques, time lapse videos are being collected
to quantify the behavior of hundreds of cells in a tissue over multi-
ple days. For visualizing the cells over time within a densely
packed multilayer tissue, one such in vivo time-lapse microscopy
technique is confocal laser scanning microscopy (CLSM) based Live
Cell Imaging. With this technique, optical cross sections of the cells
in the tissue are taken over multiple observational time points to

generate spatio-temporal image stacks. For high-throughput anal-
ysis of these large volumes of image data, development of fully
automated image analysis pipelines are becoming necessities,
thereby giving rise to many new automated visual analysis
challenges.

Automated cell tracking with cell division detection is one of
the major components of all such pipelines (such as Fernandez
et al., 2010) that analyze the live cell imaging data. A review of cur-
rent cell tracking imaging methodologies can be obtained in
(Kircher et al., 2011). The computational challenges related to a
robust design of cell tracker come from multiple sources such as
variable number of cells in the Field of View (FoV), deformation
of cell shapes, complex topologies of cell clusters, low SNR in the
images, etc. In this paper, we present an automated visual tracker
for cells tightly packed in developing multilayer tissues. This calls
for developing strategies for temporal associations of the cells.
Moreover, since at every time point of observation a cell could be
imaged across multiple spatial images, the tracking method must
be capable of finding correspondences in the spatial direction as
well. Beyond these, the tracker has to be able to detect cell
divisions, detect new cells as the deeper layers of the tissues are
imaged, differentiate between cells in a close neighborhood
sharing similar physical features and generate correct matches in
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presence of low SNR. These challenges are evident in the sample
CLSM image stack of a live Arabidopsis shoot meristem, as shown
in Fig. 1.

1.1. Related work and our contributions

There has been some work on automated tracking and segmen-
tation of cells in time-lapse images, for both plants and animals.
One of the well-known approaches for segmenting and tracking
cells is based on evolution of active contours (Dzyubachyk et al.,
2010; Li and Kanade, 2007; Li et al., 2008; Padfield et al., 2009;
Dufour et al., 2005). However, this method is not suitable for track-
ing where all the cells are in close contact with each other and
share very similar physical features, nor is there any reported
result on spatial correspondence. In fact, in spatio-temporal image
stacks where the cells are arranged in compact multilayer struc-
ture, slice of a new cell can legitimately appear at the exact same
spatial location as that of a different cell located in the layer just
above it. This characteristic, along with the fact that these tightly
packed cells are mostly stationary, can force the active contour
based tracker to generate false spatial tracks.

The Softassign method uses the information on point location to
simultaneously solve both the problem of global correspondence
as well as the problem of affine transformation between two time
instants iteratively (Chui and Rangarajan, 2000; Gor et al., 2005).
However, these methods are more suitable for aligning global fea-
tures than finding correspondences between non-uniformly grow-
ing individual cells. Although (Gor et al., 2005) present a sample
result on SAM shoot meristem without validating against ground
truth, it is not enough to evaluate the accuracy of this method on
a typical 4D confocal data.

Besides the aforementioned approaches, tracking based on
association between detections such as (Kachouie et al., 2006;
Kirubarajan et al., 2001) has shown good performance on time-

lapse images. In (Bise et al., 2011), the authors proposed a cell
tracking method on phase contrast time-lapse images that
performs a global association of tracklets generated by frame-by-
frame detection based tracking. Many other algorithms that have
been successfully applied to single molecule localization and 2D
movement tracking have been reviewed in (Kalaidzidis, 2007).
Delibaltov et al. (2012) and Karthikeyan et al. (2012) describe
probabilistic framework for joint detection and tracking of melano-
somes. In (Liang et al., 2013), the authors have proposed a multiple
hypothesis based framework that can be applied to solve particle
tracking and 3D cell segmentation problems, which include split-
ting and mergings. In (Yang et al., 2005), the authors presented a
method for tracking large number of particles undergoing dense
motion by integrating motion models at particle, local and global
levels. However, these methods perform well when the feature
quality or the underlying motion model is reliable. In fact, for many
applications such as the one presented in this paper, there is no
motion information available and hence it cannot be exploited
for tracking.

We are looking at a more challenging problem, where the
features extracted from each cell may not be reliable enough for
accurate data association. As an example, in this paper the experi-
ments are performed on confocal time lapse image stacks of plant
shoot apical meristem, where hundreds of cells are tightly clus-
tered in a multi-layered architecture and only the boundary of each
cell is visible. Thus the features extracted for each cell could only
be the shape and area, which could often be non-discriminating
between cells even from a local neighborhood. The cell tracking
problem is targeted to obtain association between cell slices along
both space and time. One possible solution approach could be to
begin with 3D segmentation (such as 3D watershed) at each time
step and then associate them across time. This approach would fail
for the problem at hand, where because of extremely low z-resolu-
tion (3–4 slices/cell) the horizontal cell walls (x–y plane) are

Fig. 1. A typical 4D (X–Y–Z–T) live-imaging data. A live Arabidopsis shoot meristem tissue is imaged using a confocal laser scanning microscope at multiple time points. The
plasma membranes of the cells are stained with fluorescent proteins and that is why the cell walls are the only visible parts. Each of the first three columns of images presents
Z stack of image slices, i.e. the cross sections of the tissue imaged at various depths of it. When such images are collected over time to capture the growth of the tissue along
with that of individual cells in it, it forms a 4D image stack. As can be seen from the figure, there are various challenges associated with the problem, viz. growth/deformation
of the cells in the tissue, stereotypical cell shapes in the tissue and hence less discriminative physical features (as an example, four cells from a close neighborhood are marked
with white and yellow arrows respectively in two consecutive time points which have very similar shapes and sizes), minor shifts between images and low SNRs in the
central regions of the tissue. We have zoomed into these low SNR regions in the 4th column of the figure. As seen, it is really difficult to even manually mark the boundaries of
a number of cells in these regions.
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