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a b s t r a c t

Shape prior plays an important role in accurate and robust liver segmentation. However, liver shapes
have complex variations and accurate modeling of liver shapes is challenging. Using large-scale training
data can improve the accuracy but it limits the computational efficiency. In order to obtain accurate liver
shape priors without sacrificing the efficiency when dealing with large-scale training data, we investigate
effective and scalable shape prior modeling method that is more applicable in clinical liver surgical
planning system.

We employed the Sparse Shape Composition (SSC) to represent liver shapes by an optimized sparse
combination of shapes in the repository, without any assumptions on parametric distributions of liver
shapes. To leverage large-scale training data and improve the computational efficiency of SSC, we also
introduced a homotopy-based method to quickly solve the L1-norm optimization problem in SSC. This
method takes advantage of the sparsity of shape modeling, and solves the original optimization problem
in SSC by continuously transforming it into a series of simplified problems whose solution is fast to
compute. When new training shapes arrive gradually, the homotopy strategy updates the optimal
solution on the fly and avoids re-computing it from scratch.

Experiments showed that SSC had a high accuracy and efficiency in dealing with complex liver shape
variations, excluding gross errors and preserving local details on the input liver shape. The homotopy-
based SSC had a high computational efficiency, and its runtime increased very slowly when repository’s
capacity and vertex number rose to a large degree. When repository’s capacity was 10,000, with 2000
vertices on each shape, homotopy method cost merely about 11.29s to solve the optimization problem
in SSC, nearly 2000 times faster than interior point method. The dice similarity coefficient (DSC), average
symmetric surface distance (ASD), and maximum symmetric surface distance measurement was
94.31 ± 3.04%, 1.12 ± 0.69 mm and 3.65 ± 1.40 mm respectively.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Primary liver cancer is one of the most life-threatening cancers
around the world. In China, liver cancer is the second leading
source of cancerous death, with a mortality rate of 26.26 per
100,000 people (Chen and Zhang, 2011). Among the variety of
treatment methods, liver transplantation and liver resection are
the most effective ones (Sotiropoulos et al., 2009). Considering
the lack of available liver from cadaver, living donor liver
transplantation (LDLT) is very important to extend the scarce
donor pool (Broelsch et al., 2000).

A detailed knowledge of liver anatomy plays a key role in the
determination of surgery strategy for LDLT. The volume of trans-
planted liver portion should be sufficient for the recipient and
the remaining portion should be as large as possible to minimize
trauma to the donor. Besides, since anatomies of intrahepatic
vessels and tumors vary enormously among different patients,
surgeons need to learn the location of the liver portion that would
be cut off, together with the distribution of intrahepatic vessels
and tumors before the surgery to achieve the best proposal for
resection. As a result, preoperative planning based on medical
image is highly helpful for the accuracy and safety of liver surgery.

Segmentation of liver from preoperative images is a key module
in liver surgical planning. However, two important factors put
forward a big challenge for accurate and robust segmentation of
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liver in clinical environment (Heimann et al., 2009). First, the low
contrast and week boundary information in medical images can
easily lead to mis-segmentation. For example, gray levels of the
liver and its adjacent tissues are very similar, which renders
the boundary hard to detect. Second, intrahepatic tumors often
cause inhomogeneous gray levels and misleading boundaries, so
these tissues may not be successfully preserved in segmentation
results. These factors make prior information about liver shapes
highly significant for accurate segmentation.

Shape prior-based approaches are more stable against local
image artifacts than traditional methods that solely rely on low-
level appearance cues. For instance, shape prior has been widely
incorporated into watershed (Hamarneh and Li, 2009), geodesic
active contours (Leventon et al., 2000), level set (Cremers et al.,
2007; Rousson and Paragios, 2000), graph cuts (Vu and
Manjunath, 2008), and it plays an important role in robust segmen-
tation of a variety of organs such as left ventricle (Zhu et al., 2009),
kidney (Xie et al., 2005), liver (Heimann et al., 2006), prostate
(Ghose et al., 2012, 2010), and brain structures (Shen et al.,
2001), etc.

In the application of liver surgical planning, there are two
important requirements on shape prior modeling for liver. First,
the shape prior should be patient-specific and accurate enough.
This is because liver shapes from different individuals have very
complex variations, and tumors often make liver shapes more
complex. A patient-specific shape prior should contain enough
prior information about a specific patient, otherwise the complex
liver shape variations may lead to a big difference between shape
priors and actual liver shapes for the patients, in which case the
inaccurate shape priors will not help segmentation process so well.
In addition, the shape prior modeling process should be scalable
and efficient. Accurate liver shape modeling requires a large-scale
training data and high number of vertices on liver shapes. To be
applicable in clinical environment, the shape prior modeling
method should remain a low-level of time consumption when
training data and vertex number increase to a large scale. In
addition, in many cases training shapes are collected gradually.
When new training shapes arrive, the model should be updated
on the fly with a high requirement on efficiency.

One of the most popular shape prior modeling methods is to use
statistical shape models (SSM) to learn the priori information of
shape variations from many training samples and employ it to rep-
resent an input shape adaptively (Heimann and Meinzer, 2009).
The Active Shape Model (ASM) (Cootes et al., 1995) is widely used
to deal with shapes that follow a unimodal Gaussian distribution.
When shape variations are complex, a mixture of Gaussians may
be able to handle them (Cootes and Taylor, 1999), assuming shapes
follow a multimodal distribution. To overcome the limitation of
ASM on statistical constraint, manifold learning techniques
(Etyngier et al., 2007) can be employed to obtain a non-linear
shape prior. Alternatively, the shape space can be divided into mul-
tiple sub-spaces in which shape distributions are more compact
and easier to model. These methods include population-based
and patient-specific shape statistics (Shi et al., 2008; Yan et al.,
2011; Zhang et al., 2011), hierarchical ASM (Davatzikos et al.,
2003), and subject-specific dynamical model (Zhu et al., 2009), etc.

In the recent years, sparse representation has proven to be
extremely powerful to obtain a compact high-fidelity representa-
tion of the observed signal. It has also been increasingly used in
a lot of image processing applications (Wright et al., 2010), where
using sparsity as a prior led to state-of-the-art results. Gao et al.
(2012) proposed a sparse representation based classification
method and applied it to prostate segmentation. Shi et al. (2014)
employed a patch-based sparse representation in neonatal atlas
construction and successfully recovered more anatomical details.
Sparse Shape Composition (SSC) (Zhang et al., 2012a) is a recently

proposed method for shape prior modeling. It does not need any
assumption on shapes’ parametric probability distribution but
can effectively model complex shape variations. It is also able to
capture gross errors in the input shapes and preserve local details
even when they are not statistically significant in the repository
(Zhang et al., 2012a). Due to these advantages, SSC has been suc-
cessfully applied in cardiac motion analysis (Yu et al., 2013), lung
localization and other applications (Zhang et al., 2012a). It also
showed a great advantage in robust liver shape modeling (Wang
et al., 2013). However, its computational efficiency may be limited
by increasing repository’s capacity and number of vertices on each
shape. To obtain efficient shape modeling, one may decrease the
repository’s capacity or the number of vertices, but the accuracy
will also be reduced. Dictionary learning method can improve
the speed of computation by reducing redundancy of the shape
repository (Zhang et al., 2012b). However, the dictionary still
inevitably loses important shape information and it needs to be
updated every time when new shapes are added to the repository.

A widely-used optimization scheme to solve SSC is the interior
point method. It can achieve the optimal solution conveniently but
has a high complexity, which precludes its application when the
problem is on a large-scale (Beck and Teboulle, 2009). Gradient-
based methods are more efficient since they usually make use of
the sparsity of the problem. For example, the iterative
shrinkage-thresholding algorithm (ISTA) and the fast iterative
shrinkage-thresholding algorithm (FISTA) have been successfully
used in signal/image processing with fast speed (Beck and
Teboulle, 2009). Other fast L1-minimization algorithms include
the augmented Lagrange multiplier (ALM) method (Afonso et al.,
2011), iteratively reweighted algorithms (Chartrand and Wotao,
2008), and primal–dual algorithms (Chambolle and Pock, 2011),
with their application in image restoration, reconstruction, denois-
ing, etc. Homotopy (Foucart and Rauhut, 2013) is substantially fas-
ter than interior point method. It continuously transforms the L1
optimization problem into a series of simplified problems whose
solution is fast to compute (Malioutov et al., 2005). Homotopy is
more efficient than other methods such as FISTA and ALM in sparse
representation problems of face recognition (Yang et al., 2010). It
has also been used as a highly effective way to solve the L1
optimization problem in many other fields, such as the recovery
of streaming signals (Asif and Romberg, 2013) and highly
undersampled image reconstruction (Trzasko and Manduca, 2009).

On the other hand, in many medical imaging applications such
as liver image segmentation based on statistical shape models,
training shapes may not come in on batch. This is because it is hard
to obtain a training shape with a large number of vertices in real-
time, and constructing an informative shape repository with a
large capacity is extremely time consuming. As a result, new train-
ing shapes are gradually added to an existing shape repository. In
this case, the optimization of shape modeling should be updated
when new training shapes come. A direct way to solve this prob-
lem is to re-compute the optimal solution using the expanded
repository, disregarding the solution obtained from the previous
repository. However, this method has a low efficiency. A better
way is to take advantage of the previous solution and compute
the new one in a faster speed.

The combination of SSC and homotopy was preliminarily inves-
tigated by Wang et al. (2014). However, the property of homotopy
and SSC was not discussed in detail. In this paper, we study the
applicability of homotopy-based SSC in liver shape modeling to a
further degree and investigate its performance when updating
the modeling on the fly. The new method can improve the accuracy
of SSC-based liver shape modeling by using a large-scale training
data and high number of vertices on each shape. The runtime of
the new method just increases very slowly when the scale of train-
ing samples and the number of vertices grow to a large scale. In
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