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a b s t r a c t

Contributions: We propose a novel framework for joint 3-D vessel segmentation and centerline extrac-
tion. The approach is based on multivariate Hough voting and oblique random forests (RFs) that we learn
from noisy annotations. It relies on steerable filters for the efficient computation of local image features
at different scales and orientations.
Experiments: We validate both the segmentation performance and the centerline accuracy of our
approach both on synthetic vascular data and four 3-D imaging datasets of the rat visual cortex at
700 nm resolution. First, we evaluate the most important structural components of our approach: (1)
Orthogonal subspace filtering in comparison to steerable filters that show, qualitatively, similarities to
the eigenspace filters learned from local image patches. (2) Standard RF against oblique RF. Second, we
compare the overall approach to different state-of-the-art methods for (1) vessel segmentation based
on optimally oriented flux (OOF) and the eigenstructure of the Hessian, and (2) centerline extraction
based on homotopic skeletonization and geodesic path tracing.
Results: Our experiments reveal the benefit of steerable over eigenspace filters as well as the advantage of
oblique split directions over univariate orthogonal splits. We further show that the learning-based
approach outperforms different state-of-the-art methods and proves highly accurate and robust with
regard to both vessel segmentation and centerline extraction in spite of the high level of label noise in
the training data.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Segmentation and analysis of tubular structures such as blood
vessels, in particular, play a crucial role for numerous medically
oriented applications and have attracted a lot of attention in the
field of medical image processing. The multi-scale nature of ves-
sels, image noise and contrast inhomogeneities make it a challeng-
ing task. In this context, a large variety of methods have been
developed exploiting photometric and structural properties of
tubular structures.

1.1. Related work

1.1.1. Vessel segmentation
Vessel segmentation is an established field in biomedical image

processing, see for example Kirbas and Quek (2004) and Lesage
et al. (2009) providing extensive reviews. Many of them are
notably tailored to specific applications and imaging modalities.
Rather simple methods for vessel detection, e.g., absolute or locally
adaptive thresholding (Otsu, 1979; Canny, 1983), are regularly
used in practice due to their conceptual simplicity and computa-
tional efficiency but they are a serious source of error and require
careful parameter selection. More sophisticated segmentation
techniques can roughly be divided into two groups. One group pur-
sues a top-down strategy by iteratively propagating segmentation
labels starting at set of seeds towards distal branches by means of,
e.g., region growing (Martínez-Pérez et al., 1999; Lo et al., 2010),
active contours (Lorigo et al., 2001), particle filtering (Lesage
et al., 2008; Florin et al., 2006), or path tracing (Zhou et al., 2007;
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Schneider and Sundar, 2010). The design and choice of an
appropriate energy or posterior density term to guide the evolu-
tion of the segmentation is crucial and usually involves strong
assumptions on the underlying structures to be detected. Simi-
larly, elaborate break criteria are required to prevent the segmen-
tation from leaking into the background, particularly for data
with a low signal to noise ratio. Another group of methods fol-
lows the bottom-up paradigm aiming at optimizing a global
neighborhood graph in order to incorporate spatial context
(Türetken et al., 2012; Rempfler et al., 2014). The graph is com-
monly defined on the voxel locations based on a likelihood for
a voxel belonging to a tubular structure as well as certain con-
straints for better robustness, e.g., handling of bifurcations and
low-contrast regions (Breitenreicher et al., 2013). Standard opti-
mization strategies such as belief propagation or graph cuts are
commonly applied to find the global optimum of the graph which
intrinsically defines the termination criteria. However, dealing
with large image data, global optimization easily becomes com-
putationally infeasible.

1.1.2. Vessel enhancement
An essential element of all algorithms are measures for tubu-

larity or ‘‘vesselness’’. They are commonly calculated based on
optimal filtering and Hessian-based approaches relying on ideal-
ized appearance and noise models to enhance tubular structures.
The former includes optimal edge detection (Canny, 1983) and
steerable filters providing an elegant theory for computationally
efficient ridge detection at arbitrary orientations (Jacob and
Unser, 2004; González et al., 2009b). The latter is based on the
eigenanalysis of the Hessian capturing the second-order structure
of local intensity variations (Sato et al., 1997; Frangi et al., 1998).
The Hessian is commonly computed by convolving the image
patch with the partial second-order derivatives of a Gaussian
kernel as the method of choice for noise reduction and to tune
the filter response to a specific vessel scale. This basic principle
has already been used by Canny for edge and line detection
(Canny, 1983; Schneider, 1990). The differential operators
involved in the computation of the Hessian are well-posed con-
cepts of linear scale-space theory (Lindeberg, 1996). Modeling ves-
sels as elongated elliptical structures, the eigendecomposition of
the Hessian has a geometric interpretation, which can be used to
define a vesselness measure as a function of the eigenvalues
(Sato et al., 1997; Frangi et al., 1998). Due to the multi-scale nat-
ure of vascular structures, Hessian-based filters are commonly
applied at different scales. Besides, the eigenvector corresponding
to the largest eigenvalue of the Hessian computed at the most dis-
criminative scale is a good estimate for the local vessel direction.
In practice, vesselness filters tend to be prone to noise and have
difficulty in detecting vessel parts such as bifurcations not com-
plying with the intrinsic idealized appearance model. More
recently, Xiao et al. (2013) proposed to replace the Gaussian kernel
of standard Hessian approaches with a bi-Gaussian function that
allows for independent selection of different scales in the fore-
ground and background. The authors show that a proper selection
of the scale parameters reduces interference from adjacent objects
while preserving intra-region smoothing. As compared to Hessian-
based approaches using inappropriately broad Gaussian kernels, it
is hence better suited to resolve neighboring structures, in partic-
ular. Vesselness filters have also been successfully applied for glo-
bal vessel segmentation in X-ray angiography using ridge tracking
(Schneider and Sundar, 2010) and graph cut theory (Hernández-
Vela et al., 2011). In order to partly overcome the shortcomings
of Hessian-based filters, optimally oriented flux (OOF) as intro-
duced by Law and Chung (2008) and its anisotropic variations
(Benmansour and Cohen, 2011) have recently gained attention
for the segmentation of different anatomical structures including

vessels (Benmansour et al., 2013) and intervertebral discs (Law
et al., 2013). Briefly, OOF aims at computing an optimal projection
direction minimizing the inward oriented flux at the boundary of
localized circles (2-D) or spheres (3-D) of different radii (scales).
Similar to the Hessian-based approaches, OOF can be used to esti-
mate the local vessel direction as a generalized eigenvalue prob-
lem. At the same time, the OOF descriptor is more robust
against image noise and local intensity inhomogeneities in the
presence of nearby structures, which adversely affects the differ-
ential nature of the Hessian. The OOF value, i.e., the projected out-
ward flux, at a certain position and scale can be interpreted as the
likelihood of the voxel being centered in a tubular structure of the
selected scale. By design, OOF hence provides strong responses at
centerlines of curvilinear structures. Similar to the Hessian-based
vesselness, the OOF eigenvalues can be combined to obtain a
response across the entire structure (Law and Chung, 2008;
Benmansour and Cohen, 2011). Finally, Law and Chung (2010)
have demonstrated that different measures of image gradient
symmetry can be derived from OOF to guide an active contour
model for 3-D vessel segmentation with promising results on clin-
ical intracranial and cardiac image data.

1.1.3. Centerline extraction
For many applications, vessel detection, i.e., binary segmenta-

tion of the vessel lumen, is insufficient and a more comprehensive
vascular description is desirable to characterize the topology and
morphology of vascular networks. To this end, the tubular shape
of a vascular segment can be modeled by its centerline, i.e., the
1-D curve centered inside the vessel lumen, along with an estimate
of the vessel diameter along the centerline assuming a circular
cross-section. Other centerline models rely on more general
cross-sectional contours such as ellipses (Krissian et al., 2006). Var-
ious approaches for centerline extraction have been proposed in
the literature including skeletonization by homotopic thinning
(Palágyi and Kuba, 1998; Pudney, 1998) and minimal path tech-
niques (Lesage et al., 2009, Section 4.4). The latter computes the
centerline between two-points as the path minimizing a certain
energetic potential favoring centerline positions. Minimal path
techniques enjoy great popularity due to their robustness and glo-
bal optimality properties (Cohen and Kimmel, 1997). Different
variations have been proposed that mostly differ in the definition
of the energy term and the numerical optimization schemes such
as Dijkstra-like (Gülsün and Tek, 2008; Breitenreicher et al.,
2013) and fast marching schemes (Sethian, 1999; Benmansour
and Cohen, 2011). Deschamps (2001) defines a distance potential
as a non-linear function of the distance to the object boundary. It
is used to readjust minimal paths towards the vessel center. Slight
inaccuracies in the extracted vessel boundaries may easily impair
the distance-based metric, though. Benmansour and Cohen
(2011) propose an unisotropic metric based on OOF (Law and
Chung, 2008) and present promising results. However, accurate
centerline extraction requires a dense sampling of the scale space
which is computationally expensive when dealing with tubular
structures in a wide range of scales. Recently, voting mechanisms
as used for object detection in the computer vision community
(Gall et al., 2011) have been applied in the context of centerline
extraction to increase robustness against noise and low-contrast
regions, in particular (Zhou et al., 2007; Risser et al., 2008;
Rouchdy and Cohen, 2012).

1.2. Overview

In this paper, we aim at efficient processing of 3-D high-
resolution angiographic image data (> 1010 voxels) mapping the
cerebrovascular system down to the capillary level, which is of
great interest for the analysis of the cerebral vasculature
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