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a b s t r a c t

Prenatal neuroimaging requires reference models that reflect the normal spectrum of fetal brain devel-
opment, and summarize observations from a representative sample of individuals. Collecting a suffi-
ciently large data set of manually annotated data to construct a comprehensive in vivo atlas of rapidly
developing structures is challenging but necessary for large population studies and clinical application.
We propose a method for the semi-supervised learning of a spatio-temporal latent atlas of fetal brain
development, and corresponding segmentations of emerging cerebral structures, such as the ventricles
or cortex. The atlas is based on the annotation of a few examples, and a large number of imaging data
without annotation. It models the morphological and developmental variability across the population.
Furthermore, it serves as basis for the estimation of a structures’ morphological age, and its deviation
from the nominal gestational age during the assessment of pathologies. Experimental results covering
the gestational period of 20–30 gestational weeks demonstrate segmentation accuracy achievable with
minimal annotation, and precision of morphological age estimation. Age estimation results on fetuses
suffering from lissencephaly demonstrate that they detect significant differences in the age offset com-
pared to a control group.

� 2013 Published by Elsevier B.V.

1. Introduction

The analysis of the early development of a fetus in utero offers
rich insights into the genesis of human anatomy. In particular, the
emerging cerebral morphology is of both clinical and academic
interest. The advance of novel imaging methods, such as ultra-fast
Magnetic Resonance Imaging (MRI), allows for high-resolution im-
age acquisition in utero (Garel, 2004) and the observation of the ra-
pid fetal cerebral development. Fig. 1 shows an example of the
developing brain from 20th to 30th gestational weeks (GW).

Even though fetal MRI provides a wealth of information, clinical
assessment is typically performed qualitatively (Ghai et al., 2006).
Both, clinicians and researchers need models capturing the devel-
opmental characteristics and variability in a large population. They

can serve as basis for the study of developmental paths in healthy
and patient groups, and as reference during quantitative assess-
ment of individual cases in a clinical setting. One possible solution
are spatio-temporal models and corresponding segmentations of
brain structures learned from large numbers of in vivo data. A main
limitation of this approach is the difficulty of acquiring complete
annotation for a sufficiently large number of cases. We propose
to learn a model or atlas of the development of a fetal anatomical
structure as a latent spatio-temporal prior that connects the seg-
mentations across subjects at different gestational ages. Starting
from a small set of annotated cases, we learn segmentations for a
large population together with spatio-temporal priors that link
segmentation and gestational age.

The need to perform quantitative group-wise studies in neuro-
imaging has motivated intense research aiming at establishing
accurate correspondences across individuals and labeling anatom-
ical regions in the brain. In studies investigating the adult brain,
this is typically achieved by an annotated atlas that serves as
reference template (Fischl et al., 2002, 2004; Smith et al., 2004;
Woolrich et al., 2009; Ashburner, 2007). Each individual is
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registered to the template, and coordinates and region labels such
as Brodmann areas (Brodmann, 1909) are transferred accordingly.
Templates and reference spaces range from the single subject
Talairach template (Talairach and Tournoux, 1988), to the Mon-
treal Neurological Institute (MNI) space with a template based on
larger control cohorts (Evans et al., 1993; Mazziotta et al., 1995).
Aside from transferring labels to new subjects, an atlas can also re-
veal characteristics of the population it is build from. Examples are
population studies based on voxel-based morphometry or shape
analysis to detect differences between adult subject groups (Ash-
burner and Friston, 2000; Karas et al., 2003), or fetal cohorts (Ghol-
ipour et al., 2012). Davis et al. (2007) performed kernel regression
to capture spatio-temporal characteristics of the aging human
adult brain from MR scans. A similar method using an adaptive
kernel was published by Serag et al. (2012) for the developing
brain. Spatio-temporal atlases detected developmental speed dif-
ferences in two chimpanzee species (Durrleman et al., 2009,
2010). Aljabar et al. (2011) reported results on manifold learning
as representation of a neonatal dataset, and Kuklisova-Murgasova
et al. (2010) introduced an atlas for the developing brain from
pre-term infants between the 29th and 44th GW. Encouraging re-
sults for fetal data covering a period from GW 20 to 24 were re-
ported in Habas et al. (2010), where the authors presented a
spatio-temporal atlas for a dataset of 20 fetal brains imaged in ute-
ro by T2-weighted MRI. Spatio-temporal tensor-based volume
morphometry was proposed to study the sulcal formation of fetal
brains (Rajagopalan et al., 2011). In a recent paper by Gholipour
et al. (2012), a spatio-temporal atlas facilitated fetal brain MRI seg-
mentation of patients and normal controls for the detection of ven-
tricle atrophies due to pathologies. Fishbaugh et al. (2012)
introduce an interesting approach that learns an atlas of the popu-
lation via shape regression. In addition, subject-specific growth
trajectories are estimated. To measure shape variability, the gener-
ic model is warped to individual subjects using diffeomorphic
mapping. In their experiments, they analyzed the growth scenario
of two different population groups. Results were reported on both
a synthetic and a clinical dataset. Latent atlases have been pro-
posed to connect segmentations in multi-modal imaging data of
pathologies, such as brain-tumors (Riklin-Raviv et al., 2009). The
latent atlas is learned from partially annotated imaging data to
capture the varying representation of tissue properties across
modalities. It learns potentially different segmentations in all
modalities and a latent prior that represents the tumor presence
across the registered imaging data. While Riklin-Raviv et al.
(2009) accounts for variability across the data, it does not incorpo-
rate parameters such as time, or age, that might have a systematic
effect on the shape, or distribution of anatomical structures. Time
is crucial when observing developmental processes or disease pro-
gression. Its effect can be substantial, and the integration of param-
eters that have a characteristic effect is conceptually different from
random variability in a population.

In this paper, we propose a method to build a spatio-temporal
latent atlas capturing the development characteristics of cerebral
structures during early human brain development. Instead of
exhaustive annotation of anatomical structures, it simultaneously
learns a spatio-temporal latent atlas and segmentations of

individual structures based on a small number of annotated exam-
ples, and a large number of examples without annotation. We refer
to this as a semi-supervised approach as opposed to fully-super-
vised approaches that use annotations on all examples, such as
the leave-one-out experiments in Habas et al. (2010) or Gholipour
et al. (2012). To connect the atlas with individual imaging data, we
use a statistically-driven level-set segmentation framework. It
translates the prior or uncertainty shared across the data as the lo-
gistic function of the corresponding level-set values, similar to Pohl
et al. (2007). The spatio-temporal latent atlas is a probabilistic
prior or map of the presence of an anatomical structure as a func-
tion of location and gestational age (GA). We use kernel regression
for a continuous representation of the temporal domain, allowing
the interpolation for GA that are not represented in the training
dataset. Initial results were reported in Dittrich et al. (2011). The
resulting four-dimensional atlas links the segmentations, and rep-
resents the cross-sectional component of variability in the popula-
tion for a specific age, and the developmental gradient of the
structure along the age axis. This is visualized in Fig. 2 for the per-
iod between GW 20 and 30. The gradient of the spatio-temporal at-
las can be regarded as measure of uncertainty in two ways. In
Fig. 2(a), the variability among cases of the same age is depicted
as the local spatial gradient of the atlas at the surface boundary.
Red areas are regions of high variability among the subjects, the
gradient is low in these areas since segmentations are dissimilar
across subjects. Yellow corresponds to relatively stable areas with
a high local gradient of the prior. Fig. 2(b) shows the gradient of the
atlas along its longitudinal axis at the structure surface. Red areas
are expanding, blue areas are shrinking.

The atlas has several uses: it can serve as reference to represent
characteristic development and its variability in a population, it
can be used to identify deviations from a healthy population quan-
titatively, and it is a prerequisite for group-studies of the fetal
development such as (Schöpf et al., 2012a,b), since it provides
the means to establish correspondences across subjects, and age.
Finally, it allows for estimating a morphological age, by matching
individuals to the atlas along the age axis.

The remainder of this paper is structured as follows. In Section 2,
we introduce the dataset and preprocessing methods followed by
an in-depth explanation of the methodology. We define the prob-
lem, and detail methods for the learning of the latent atlas, and
its use for morphological age estimation. In Sections 3 and 4 we
present and discuss our experimental results in detail, and Sec-
tion 5 closes with a conclusion and outlook.

2. Material and methods

2.1. Study data collection

This work is part of an ongoing collaboration with neuroradiol-
ogists and anatomists specialized on fetal MRI assessment. We
took advantage of two distinct datasets. The first includes 32 fetal
MR images of singleton pregnancies depicting the brain between
GW 20 and 30 were retrospectively investigated. Cases suspicious
for cardiac abnormalities, complex syndromes or chromosomal
abnormalities were excluded from this study. The second dataset

Fig. 1. A consistently positioned coronal slice of different individuals illustrating the cerebral development at GW 20, 22, 24, 26, 28, 30 (from left to right).
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