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a b s t r a c t

Diffusion-weighted imaging (DWI) allows imaging the geometry of water diffusion in biological tissues.
However, DW images are noisy at high b-values and acquisitions are slow when using a large number of
measurements, such as in Diffusion Spectrum Imaging (DSI). This work aims to denoise DWI and reduce
the number of required measurements, while maintaining data quality. To capture the structure of DWI
data, we use sparse dictionary learning constrained by the physical properties of the signal: symmetry
and positivity. The method learns a dictionary of diffusion profiles on all the DW images at the same time
and then scales to full brain data. Its performance is investigated with simulations and two real DSI data-
sets. We obtain better signal estimates from noisy measurements than by applying mirror symmetry
through the q-space origin, Gaussian denoising or state-of-the-art non-local means denoising. Using a
high-resolution dictionary learnt on another subject, we show that we can reduce the number of images
acquired while still generating high resolution DSI data. Using dictionary learning, one can denoise DW
images effectively and perform faster acquisitions. Higher b-value acquisitions and DSI techniques are
possible with approximately 40 measurements. This opens important perspectives for the connectomics
community using DSI.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Diffusion-weighted imaging (DWI) is able to non-invasively im-
age the diffusion of water molecules in biological tissues. DWI was
rapidly made popular by several clinical applications using appar-
ent diffusion coefficient (ADC) imaging and diffusion tensor imag-
ing (DTI) (Basser et al., 1994). However, the diffusion tensor is an
over-simplified Gaussian view of the local diffusion phenomenon
happening in each imaging voxel. The holy grail of DWI is to re-
cover the full tridimensional (3D) probability distribution describ-
ing the local diffusion phenomenon. This is often called the
ensemble average propagator (EAP) formalism (Tuch, 2002; Wed-
een et al., 2005; Descoteaux et al., 2011), which provides a power-
ful framework to describe and predict the diffusion behavior in
complex materials. The EAP contains the full 3D information about
the water molecule diffusion within the imaging voxel, which goes
beyond principal directions that can be used for tractography
(Merlet et al., 2012b). The EAP can serve to estimate parameters

that reflect the microstructural environment, such as axonal diam-
eter in recent works (Assaf et al., 2008; Ozarslan et al., 2013).

EAP imaging can be long and demanding in terms of acquisition
requirements (Descoteaux et al., 2011). Hence, the last 10 years
have seen the emergence of numerous techniques to reconstruct
the angular information of the EAP, the orientation distribution
function (ODF) or other such angular distributions (Seunarine
and Alexander, 2009; Descoteaux and Poupon, in press) from a re-
duced sampling scheme. These new techniques are most often re-
stricted to a single shell in q-space with N uniform measurements
for a single b-value (typically b 2 [1000, 3000] s/mm2). This
spanned the rich literature of high angular resolution diffusion
imaging (HARDI), from compartment modeling to model-free and
deconvolution techniques. These works are well covered in the fol-
lowing two book chapters (Seunarine and Alexander, 2009; Desco-
teaux and Poupon, in press).

In the last 2–4 years, Diffusion Spectrum Imaging (DSI) and 3D
DWI have regained popularity, because of two applications. First,
several works have shown that the radial information of the DWI
signal is important and can be sensitive to white-matter anomalies
caused by demyelination or brain damage (Assaf et al., 2008;
Alexander, 2008). Consequently, new modeling and anisotropy
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measures from the EAP have appeared in the literature to better
capture both the radial and angular information contained in the
diffusion signal. Second, the recent fame of DSI (Wedeen et al.,
2012) combined with connectomics studies (Hagmann et al.,
2008; Honey et al., 2009), as well as the human brain connectome
project1 have made DSI a central acquisition protocol, despite the is-
sue of long scanning time.

No matter what diffusion imaging protocol is used, be it scalar
DWI, DTI, HARDI, or DSI, there is always a trade-off between qual-
ity of the data and acquisition time. Indeed, the higher the number
of acquired images, the better the estimation of the diffusion signal
will be. A common way of improving the signal-to-noise ratio
(SNR), which is particularly poor for large b-values (see Fig. 6 for
an example), is to repeat the acquisition of the same signal with
the same sequence parameters and average them. However, for
clinical requirements and applications, and considering the reduc-
tion of the risk of motion artifacts, an acquisition time between 3
and 15 min is the limit. A first challenge is therefore to be able to
improve the SNR of a single acquisition of DWI with denoising
algorithms. A second challenge is the ability to reduce the number
of acquired images while offering the high resolution data required
to estimate complex white matter structures, such as fiber crossing
configurations, and microstructural features, such as axonal diam-
eter (Assaf et al., 2008; Alexander, 2008). This paper addresses both
of these challenges, providing validation and performance quanti-
fication using denoising metrics. The motivation for the use of a
denoising benchmark is to compare the results obtained from
undersampled data, with full resolution data after denoising using
some well established methods. The experimental section focuses
on DSI data, as it is a protocol with a dense sampling scheme using
high b-value images. Two questions are of particular interest: Can
we obtain DSI data with the same number of DWIs required for sin-
gle b-value HARDI? How much can we subsample the q-space
while keeping high spectral resolution in diffusion images?

The intuition behind this paper is that the signal measured by
multiple DWIs over the q-space is redundant and shares an under-
lying structure: the DSI acquisition on a 258 points half-space or on
the full 515 points sampling contains redundant information that
one can learn and then use to denoise or reduce the number of
acquisitions. We show that a dictionary estimated from DSI data
captures the geometry of white matter brain structures and can
thus be used in 2 different setups: (i) intra-subject studies, for
denoising purposes and (ii) inter-subject studies, to perform
super-resolution of q-space data. The latter is done by acquiring
subsampled DSI data (low resolution) and using a high resolution
dictionary of DSI profiles learnt on another subject in order to re-
cover the full DSI. This inter-subject validation setup was earlier
proposed in our previous work (Gramfort et al., 2012), and by Bilgic
et al. (2012a), although using an alternative non-physically con-
strained dictionary learning formulation (see next section). The
key contribution of this work is to use sparse coding to estimate
a dictionary of prototypical diffusion profiles constrained by phys-
ical properties of the signal. We indeed enforce symmetry and pos-
itivity for the atoms in the dictionary taking into account the
structure of the signal present in multiple DWIs. See for example
(Tournier et al., 2007), for a previous demonstration of the rele-
vance of non-negativity constraints. As for symmetry, the physics
of dMRI tells us that the measured local diffusion signal must also
be symmetric (Tuch, 2002, Sections 3.3 and 8.3.2.3).

Results are presented on a publicly available simulation dataset
and on two real DSI datasets, one from the Pittsburgh Brain Com-
petition 2009 Challenge and one from our institute. The results of
the proposed method are compared to the SNR improvements ob-

tained by applying mirror symmetry through the q-space origin,
Gaussian denoising and state-of-the-art non-local means denois-
ing. A preliminary version of this work was presented at the MIC-
CAI 2012 international conference (Gramfort et al., 2012). This
manuscript complements it with more details on the method, an
extensive simulation study and results on a new dataset (Pitts-
burgh Brain Competition 2009).

2. Theory

2.1. Diffusion-weighted imaging and diffusion spectrum imaging

Under the narrow pulse assumption (Stejskal and Tanner,
1965), there is a Fourier relationship between the measured DWI
signal and diffusion propagator, P(R),

PðRÞ ¼
Z

q2R3
EðqÞe�2piq�Rdq; ð1Þ

with E(q) = S(q)/E0, where S(q) is the diffusion signal measured at
position q in q-space, and E0 is the baseline image acquired without
any diffusion sensitisation (q = 0). We denote q = jqj and q = qu,
R = rr, where u and r are 3D unit vectors. The wave vector q is
q = cdG/2p, with c the nuclear gyromagnetic ratio of water mole-
cules and G = gu the applied diffusion gradient vector. The norm
of the wave vector, q, is related to the diffusion weighting factor
(the b-value), b = 4p2q2s, where s = D � d/3 is the effective diffusion
time with d the duration of the applied diffusion sensitizing gradi-
ents and D the time between the two pulses. Note that the Fourier
relationship between the EAP and the diffusion signal of Eq. 1 is
strictly valid only if the narrow pulse assumption is met, which is
rarely the case in in vivo 3D q-space MRI. Nonetheless, we can mea-
sure the approximation of the average diffusion propagator by tak-
ing the ensemble average over the imaging voxel, hence the name
Ensemble Average Propagator, EAP (Tuch, 2002).

The current state-of-the-art acquisition technique to recon-
struct the 3D diffusion propagator is DSI. The original DSI protocol
(Wedeen et al., 2005) measured S(q) on a Cartesian grid restricted
to a sphere of radius 5, resulting in 515 q-space discrete measure-
ments S(q). Then, a simple 3D inverse Fast Fourier Transform (FFT)
is applied to recover the EAP at every imaging voxel. Finally, the
diffusion ODF, W, can be extracted by numerically computing the
radial integral over the discrete DSI grid, r 2 [0,5], as

WðuÞ ¼
Z 5

0
PðruÞr2dr: ð2Þ

DSI acquisition is a long process. A typical full brain coverage
acquisition with 60 axial slices, 2 mm isotropic voxels, parallel
imaging, a repetition time of approximately TR = 11 s, a full DSI
grid with 515 directions and b-values from 0 to 6,000 s/mm2 or
so, takes 1h45 min of acquisition (Descoteaux et al., 2011). Because
diffusion is symmetric (Tuch, 2002), one can reduce acquisition
time by half if only the half-space is acquired, resulting in 257
directions (Hagmann et al., 2008). The missing half is then ob-
tained by applying mirror symmetry through the q-space origin.

2.2. Dictionary learning

Sparse coding, equivalently referred to as dictionary learning,
applied to diffusion weighted images such as DSI data reveals the
latent structure of the diffusion in white matter voxels. However,
sparse coding is not compressed sensing (CS). Compressed sensing
consists of three ingredients: a linear sensing process, a linear
transformation to the data that generates sparsity and is incoher-
ent to the sensing basis, and a solver used for signal recovery that
promotes sparse estimates, e.g. using ‘1 norm or ‘0 non-linear1 http://www.humanconnectomeproject.org/.
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