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a b s t r a c t

We present a novel geodesic approach to segmentation of white matter tracts from diffusion tensor imag-
ing (DTI). Compared to deterministic and stochastic tractography, geodesic approaches treat the geome-
try of the brain white matter as a manifold, often using the inverse tensor field as a Riemannian metric.
The white matter pathways are then inferred from the resulting geodesics, which have the desirable
property that they tend to follow the main eigenvectors of the tensors, yet still have the flexibility to devi-
ate from these directions when it results in lower costs. While this makes such methods more robust to
noise, the choice of Riemannian metric in these methods is ad hoc. A serious drawback of current geode-
sic methods is that geodesics tend to deviate from the major eigenvectors in high-curvature areas in
order to achieve the shortest path. In this paper we propose a method for learning an adaptive Riemann-
ian metric from the DTI data, where the resulting geodesics more closely follow the principal eigenvector
of the diffusion tensors even in high-curvature regions. We also develop a way to automatically segment
the white matter tracts based on the computed geodesics. We show the robustness of our method on sim-
ulated data with different noise levels. We also compare our method with tractography methods and geo-
desic approaches using other Riemannian metrics and demonstrate that the proposed method results in
improved geodesics and segmentations using both synthetic and real DTI data.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

In order to study normal brain development, as well as neuro-
psychiatric disorders such as autism, it is crucial to understand
how different functional regions of the brain are connected by
white matter pathways. One approach to studying white matter
in vivo is diffusion tensor imaging (DTI), a magnetic resonance
imaging (MRI) modality that measures the diffusion of water in tis-
sue. These diffusion measurements provide a means for inferring
the microstructural properties of the white matter and analyzing
fiber tracts. Three approaches to DTI analysis are: whole-brain con-
nectivity analysis; localizing white matter regions by registration
to an atlas; and segmenting individual white matter tracts from
specified regions of interest (ROI). In whole-brain connectivity
analysis, the goal is to explore the connectivity among many ana-
tomical regions over the whole brain, typically using tractography
and graph statistics (Hagmann et al., 2007). In atlas-based meth-
ods, the white matter is analyzed at the voxel level (Barnea-Goraly
et al., 2005) or the atlas is used to segment the white matter into
several anatomical tracts (Bazin et al., 2011). In this paper, we

focus on segmentation of individual white matter tracts connecting
two specified ROIs.

Several works have developed segmentation methods for white
matter tracts from DTI data. Zhukov et al. (2003) employ level-sets
to create geometric models of brain structures. Rousson et al.
(2004) extend region-based surface evolution to DTI. Lenglet
et al. (2005) model DTI data as multivariate Gaussian distributions
and employ a level variational approach to segment the white mat-
ter structures. Wang and Vemuri (2005) use the square root of the
J-divergence as the distance of tensors in a region-based active
contour model for DTI segmentation. Ziyan et al. (2006) propose
a modified spectral clustering method to segment thalamic nuclei.
Awate et al. (2007) use a non-parametric model to get a fuzzy seg-
mentation of the white matter tracts. Melonakos et al. (2007b) pro-
pose a locally constrained Bayesian region growing approach based
on a pre-computed anchor path inside the white matter tract. Niet-
hammer et al. (2009) develop a segmentation framework for near-
tubular white matter tracts through global statistical modeling and
local reorienting of the diffusion orientation. These methods focus
on segmenting the white matter tracts of interest from the tensor
field and they do not compute parameterized fiber pathways con-
necting the two end regions of the tracts. Tractography (Mori et al.,
1999b; Conturo et al., 1999; Basser et al., 2000; Koch et al., 2002;
Behrens et al., 2003; Parker et al., 2003; Lazar and Alexander,
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2005; Friman et al., 2006; Jones, 2008) and front-propagation
(Parker et al., 2002; O’Donnell et al., 2002; Jackowski et al., 2005;
Melonakos et al., 2007a; Pichon et al., 2005; Fletcher et al., 2007;
Jbabdi et al., 2008; Hao et al., 2011) approaches, however, provide
both a volumetric segmentation of the tract suitable for region-
based analysis and a parameterization suitable for along-tract
statistics (Corouge et al., 2006). In this paper, we extend the
front-propagation approaches and compare our approach to previ-
ous methods for front propagation and tractography.

1.1. Properties of tractography

Deterministic tractography (Mori et al., 1999b; Conturo et al.,
1999; Basser et al., 2000) computes streamlines (sometimes
called fibers) by forward integration of the principal eigenvector
of the diffusion tensors from one region. One major problem with
tractography is that imaging noise causes errors in the principal
eigenvector direction, and these errors accumulate in the integra-
tion of the streamlines. Another disadvantage to tractography is
that it has difficulty in cases where the goal is to find pathways
between two regions. In this scenario, streamlines begin in one
of the regions and are accepted only if they eventually pass
through the desired ending region. However, several factors con-
spire to often result in only a small fraction of fibers being ac-
cepted. For example, accumulated errors in the streamlines can
throw them off the final destination. Also, noise and partial vol-
ume effects in the tensor field can cause stopping criteria to be
prematurely triggered, either by low anisotropy tensors or sudden
direction changes. The Brute-Force (BF) approach proposed by
Conturo et al. (1999) can increase the number of accepted fibers
by initiating fiber tracking from every voxel in the brain. How-
ever, this approach still suffers from the same factors mentioned
above and can often segment only the main core of the white
matter tracts.

Stochastic tractography (Koch et al., 2002; Behrens et al., 2003;
Parker et al., 2003; Lazar and Alexander, 2005; Friman et al., 2006;
Jones, 2008) is an approach that deals with the problems arising
from image noise. In these methods, large numbers of streamlines
are initiated from each seed voxel and are integrated along direc-
tions determined stochastically at each point. However, this is a
computationally-intensive procedure (typically requiring several
hours). Also, stochastic tractography suffers from the same prob-
lems with streamlines stopping in noisy or low-anisotropy regions,
leading to artificially low (or even zero) probabilities of connection.
Although Barbieri et al. (2012) combine tensor clustering tech-
nique with stochastic tractography in order to improve the accu-
racy of the segmentation results, this method introduces more
parameters and strongly depends on the quality of the connectivity
map.

1.2. Properties of front-propagation

In the DTI literature, front-propagation approaches are one class
of methods to analyze the white matter pathways. These methods
infer the pathways of white matter by first evolving a level set
representing the time-of-arrival of paths emanating from some
starting region. Then the pathways are computed by integrating
the characteristics vectors of the level set backward from any tar-
get point to the starting region (Jackowski et al., 2005). The direc-
tion and speed of this evolving front at each point is determined by
some cost function derived from the diffusion tensor data. One
such method, first proposed by O’Donnell et al. (2002), is to treat
the inverse of the diffusion tensor as a Riemannian metric, and
the paths in the propagating front as geodesics, i.e., shortest paths,
under this metric. This makes intuitive sense: traveling along the
large axis of the diffusion tensor results in shorter distances, while

traveling in the direction of the small axes results in longer
distances. Therefore, the shortest paths will tend to remain tangen-
tial to the principal eigenvector of the diffusion tensor.

Front-propagation approaches for analyzing white matter
pathways are attractive for at least three reasons. First, the
front-propagation algorithms are more robust to noise than both
deterministic tractography and stochastic tractography. This is
because front-propagation methods compute fibers by optimizing
a global criterion over the whole brain, so the wavefront is not
constrained to exactly follow the principal eigenvector of the ten-
sors. Although the principal eigenvector of the tensor is the pre-
ferred direction for paths to travel, the minimal-cost paths may
deviate from these directions if the deviation decreases the over-
all cost, and hence are less sensitive to noise or partial voluming.
Second, front-propagation methods can compute a large number
of fibers using a short computational time. Efficient implementa-
tions of front-propagation solvers are much faster (typically
requiring several seconds) than stochastic tractography. The
graphics processing unit (GPU) implementation by Jeong et al.
(2007) even runs at near real-time speeds. Finally, as shown by
Fletcher et al., 2007, front-propagation methods can be used to
segment white matter tracts by solving the geodesic flow from
two ROIs and combining the resulting cost functions. This ap-
proach has the advantage that the solution will not get stuck in
regions of noisy data or low anisotropy, in contrast to tractogra-
phy methods. However, it also has the disadvantage that it re-
quires the user to predefine two ROIs at the endpoints of the
white matter tract of interest. Consequently, this approach is only
appropriate when the anatomy of the white matter pathway is
well-known, i.e., its endpoint regions can be reasonably identified,
because a white matter path will always be found. Although, if a
‘‘false positive’’ connection is found, this can be detected using
heuristic connectivity metrics as introduced by Parker et al.
(2002) and Jackowski et al. (2005).

1.3. High curvature tract deviation

While front-propagation is a powerful framework for comput-
ing white matter pathways and despite the advantages that
front-propagation methods have over tractography, there is one
severe drawback. These geodesics have the serious deficiency that
in high-curvature tracts they tend to deviate from the eigenvector
directions and take straighter trajectories than is desired. That is, in
high-curvature regions, the incremental cost of following the ten-
sor field is overcome by the cost associated with the longer (more
curved) path. The top image of Fig. 1 is a diagram illustrating the
problem. In a curved tensor field, one would typically prefer a path
that follows, to whatever extent possible, the major eigenvectors of
the tensors (shown in blue). The shortest path, using a Euclidean
metric (i.e., ignoring the tensors), follows a straight line except at
constraints (shown in red). The typical geodesic with a local, aniso-
tropic metric (e.g., using the inverse tensors as metric) will find a
compromise between these two (shown in magenta). Although
the magenta geodesic is taking infinitesimally higher-cost steps
than the blue curve, its overall length under the inverse-tensor
metric is shorter.

Fletcher et al. (2007) have addressed this issue previously by
‘‘sharpening’’ the tensor, i.e., increasing the anisotropy by taking
the eigenvalues to some power and renormalizing them, which in-
creases the cost of moving in directions other than the principal
eigenvector. Actually, the first front-propagation algorithm pro-
posed by Parker et al. (2002) essentially takes this sharpening
strategy to its limit, which results in a cost function that is the
dot product of the level set velocity with the principal eigenvector,
and Jbabdi et al. (2008) show that the geodesics more closely fol-
low the principal eigenvectors as the anisotropy of the noiseless
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