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The Aerodyne Inverse Modeling System was developed to enable location and characterization of
hazardous atmospheric releases from dispersion and meteorological data. It combines an automatically-
generated tangent-linear of SCIPUFF with a cost function tailored for practical applications and a mini-
mization algorithm that can search for multiple instantaneous or continuous sources without requiring
an initial guess. In this work AIMS was applied to estimate the sources in 84 FFT 07 cases that included
instantaneous and continuous releases for up to four source locations. FFT 07 was a controlled short-
range (~500 m) dispersion test using 100 digiPIDs evenly distributed over an area of 0.5 x 0.5 km.
AIMS estimated sources were in average within 90—150 m of the real sources, with the distances from
estimated to real source ranging from O to 510 m. AIMS performed better estimating the location of
instantaneous sources than of continuous ones. It also performed better for single-source situations than
for multiple source scenarios and when 16 sensors were used instead of 4. In addition to using stationary
sensors, AIMS also has the capability of processing data from mobile sensors. This was applied using
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model-generated data in an example of a release in a setting similar to an industrial facility.
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1. Introduction

The threat of atmospheric contamination by hazardous mate-
rials remains a high national security concern. There is a strong
need for the development of emerging technologies, including
sensors and algorithms, which can significantly advance risk
assessment and response capabilities. Often, nothing is known
about the event besides dispersed concentration levels detected by
sensors. Moreover, sensors can vary in type and location and more
information can be obtained by integrating the different observa-
tion types. The present paper describes the development of a new
source estimation algorithm that utilizes the tangent linear of
SCIPUFF (Second-order Closure Integrated Puff) (Sykes and Gabruk,
1997; Sykes et al., 1985) for characterizing the source of a chemical
release using multiple types of observational data, and requiring no
prior knowledge of the source.

The standard modeling approach for tracking atmospheric
plumes falls in the category of forward modeling: given an initial
state (atmospheric state and tracer concentration) and boundary
values (space and time dependent tracer emissions and the
time-evolving meteorological state), a transport model is stepped
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forward in time to produce a field of tracer concentrations at
subsequent times. In source estimation, the goal is to determine the
initial and/or boundary values that lead to a model trajectory that
is most consistent with the observations. Source estimation is an
active topic in research and development and a variety of solution
approaches have been proposed. Rao (2007) presents a good
discussion of source estimation methods. The methods discussed
include Bayesian and Monte Carlo techniques, which consist of many
forward runs from sources to receptors together with a suitable
algorithm to adjust the source conditions until an acceptable level of
agreement is reached. Other methods include Kalman filtering,
adjoint and tangent-linear models and variational data assimilation.
Adjoint models typically use only one run in reverse direction from
the receptors to determine the upwind concentrations.

Some recent inverse model applications include those by Allen
et al. (2007) that coupled a genetic algorithm with SCIPUFF for
emission source characterization and validated it using synthetic
and pollutant dispersion field data. The same group (Long et al,,
2010) also used a genetic algorithm to assess the sensitivity of
source term estimation to data quantity and quality and to deter-
mine the minimum data requirements to accurately estimate the
source term and to obtain the relevant wind information. They have
also investigated the treatment of binary or discrete variables
(e.g. atmosphere stability or the presence of rain) using a mixed
integer genetic algorithm (Haupt et al., 2011). Using a different
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approach, Lushi and Stockie (2009) combined linear least squares
with a Gaussian plume solution for the advection—diffusion equa-
tion. Their method was validated using measurements from a lead-
zinc smelting facility. Other works have focused on larger
scale applications, such as constraining Asian sources of carbon
monoxide using an adjoint method and a Bayesian solution (Kopacz
et al,, 2009); and using a variational data assimilation method to
study emissions and their time profile over central and western
Europe (Resler et al., 2010).

In this work we present the Aerodyne Inverse Modeling System
(AIMS), which combines the tangent-linear of SCIPUFF with
a minimization algorithm for estimating the number of sources and
their location, mass, release times and durations that are most
consistent with the concentration field provided. AIMS has the
advantage of not requiring an initial estimate for the source(s)
parameters from the user, thus making it suitable for situations of
malicious or accidental releases where there is no a priori infor-
mation regarding the source(s). A novel feature of AIMS is the
ability to integrate data from stationary sensors and also from
mobile sensors; it also incorporates many heuristics into the cost
function definition and in the source search algorithm to improve
the convergence of the source search algorithm. In the next section
the development of the model is discussed, including cost function
details, implementation of automatic differentiation to obtain the
tangent-linear code and details of the search algorithm. Section 3
presents results and discussion of cases using FFT 07 field data
from controlled releases and also SCIPUFF-generated data for a case
of mobile sensor.

2. Model development

The source of an atmospheric release can be described using the
following parameters: source location, source height, mass
released, time of release and duration of release. In estimating
a source, all or some of these parameters are determined. AIMS has
been developed for source estimation, it takes as input all available
measurement data, mostly concentration values and meteorolog-
ical information. The algorithm can generate an initial guess, or it
can take an estimate from the user. AIMS uses SCIPUFF as the
atmospheric dispersion model. A gradient approach is employed to
estimate the sources: a cost function is defined to quantify the
mismatch between observed and modeled concentrations; then an
optimal source estimate is obtained by applying a gradient-based
minimization algorithm to find the model inputs that minimize
the cost function. The output is the best set of source parameters for
reproducing the measurement data using the forward model.
Model outputs include number of sources, emission rates, loca-
tions, and release start and end times.

2.1. Cost function

The cost function quantifies the difference between the pre-
dicted concentration field and the observed concentration field.
Typically, it is defined to be zero in the limit that model predictions
match the data perfectly. The cost function used in AIMS is as
follows:
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where Y refers to the observed concentrations and Y™9 refers
to the model-predicted concentrations at time t and sensor s. The
cost function is a sum of M terms corresponding to the different
types of measurements m (i.e. stationary and mobile point
concentration measurements) provided to the algorithm. The
contributions of each measurement type are added using a weight
wp, that is provided by the user (by default all measurement types
are weighted equally). The term of each measurement type,
consists of a summation over T observation times. The numerator
on each time term calculates the sum of squares of the differences
between the observed and modeled concentration over all N
sensors at the given time. The denominator on each time term is
the maximum between the sum of squares of the observations at
the given t time and 5% of the maximum denominator for all
times. This form is introduced as a scaling mechanism because the
concentration values may span many orders of magnitude.
Applying this scaling avoids artificial inflation of the cost function
by low-magnitude measurements at time t: notice that as
ZQ’:l(YS"PS)Z—»Q the total cost is dominated by the model-data
discrepancies at time t, even for relatively low values of the
numerator. On the other hand, omitting the denominator in Eq. (1)
causes the cost function to be dominated by the absolute model-
data discrepancies in the larger-magnitude measurements, while
the lower-magnitude data are essentially ignored. In that case, one
would often obtain source estimates with large model-data
discrepancies at the lower-magnitude data points. The scaling
mechanism described above was found to be highly effective for
simultaneously maximizing the information content of the wide
range of data values typically found in practical observational
datasets for source estimation.

Additionally, the cost function is artificially enlarged when
a source is unphysical (negative mass or negative release duration)
or it is in a location that is undetectable by the sensors (this situ-
ation presents itself only when solving for multiple sources). These
penalizations are introduced to force the algorithm to find only
physically viable sources that contribute to reducing the cost;
essentially creating a constrained minimization algorithm while
retaining the unconstrained quasi-Newton solver described below.
The penalizations are introduced for each source that falls within
any of the cases using the following expressions:

Negative release duration : Cost = Cost — 100*tqyration;
where tgyration< 0

Negative source mass : Cost = Cost — 101%*Mass;
where Mass < 0

Noncontributing release : Cost =Cost + T*

N
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s=1 t

a release is considered noncontributing if its downwind concen-
tration is always below a specified threshold NC at all sensors and at
all measurement times.
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